设n是正整数,求证7不能整除4的n次方加一
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 16:11:10
证明:∵64n-7n能被57整除,∴64n-7n=57m(m为正整数),即82n=57m+7n,∴82n+1+7n+2=8×82n+49×7n=8(57m+7n)+49×7n=57(8m+7n),∴8
(2n+1)²-25=(2n+1+5)(2n+1-5)=(2n+6)(2n-4)4(n+3)(n-2)所以(2n+1)²-25能被4整除
琴生贝努里为你解答
证明:令m/n=t(t>=0)则m=nt(m+7*n)/(m+n)=(t+7)*n/n(t+1)n不为零原式=(t+7)/(t+1)=1+6/(t+1)1)0根号7则1+6/(t+1)
3^n+2-4*3^n+1+10*3^n=9*3^n-12*3^n+1+10*3^n=-3*3^n+10*3^n=7*3^n能被7整除
这个用数学归纳法证吧!1.当n=1时,9+5=14,所以对任何正整数n,3^(4n+2)+5^(2n+1)能被14整除是成立的,2.假设当n=k时,3^(4k+2)+5^(2k+1)能被14整除当n=
自然数除5余数可能是0,±1,±2若n=5k则n^2+n+2=25k^2+5k+2,25k^2+5k能被5整除,所以25k^2+5k+2不能被5整除若n=5k±1则n^2+n+2=25k^2±10k+
证明:我们只需把n4+4写成两个大于1的整数的乘积即可,n4+4=n4+4n2+4-4n2,=(n2+2)2-4n2,=(n2-2n+2)(n2+2n+2),因为n2+2n+2>n2-2n+2=(n-
应用数学归纳法,当N=1时,2的(N次方)+7的(N+2)次方=345能被5整除,假设当N=K时命题成立,即2的(K次方)+7的((K+2)次方)能被5整除,那么,当N=K+1时有2的(K+1)次方+
当n=2m:3^n+1=(4-1)^2m+1=[4^(2m)+.-4(2m)+1]+1=8K+2,能被2整除,但不能被8整除.当n=2m+1:3^n+1=(4-1)^(2m+1)+1=[4^(2m+1
设(4的n次方+1)为整数a,则(4的n-1次方+1)也为整数,可得到7a=4的n次方+1,所以7(a+1)=4的n次方+8,所以a=(4(4的n-1次方+1)+4-7)/7,于是得a=(4/7)*(
8^(2n+1)+7^(n+2)=8*64^n+49*7^n=8*64^n-8*7^n+57*7^n=8*(64^n-7^n)+57*7^n两项都能被57整除,所以8^(2n+1)+7^(n+2)能被
2^(n+4)-2^n=2^n*2^4-2^n=2^n(2^4-1)=2^n*15=2^(n-1)*30,所以它能被30整除.
2008!中含7的个数为[2008/7]+[2008/7²]+[2008/7³]+…=331.故a=331.
1^3-6=-5,能被6整除?奇数的三次方必为奇数,减6还是奇数,6是偶数,能整除吗?题目抄错了吧?
3^(2n+2)=(3^2)^(n+1)=(8+1)^(n+1)然后用二项式定理展开,其中8的幂小于2的只有两项:(n+1)*8+1(8的幂大于2的那些项可以被整除64)又(n+1)*8+1-8n-9
码字中……再答:证明:设Sn=1^k+2^k+3^k+..+n^k反序即:Sn=n^k+(n-1)^k+..2^k+1^k两式相加:2Sn=2+(2^k+n^k)+..(n^k+2^k)k为奇数时,有
n^5-n=(n-1)n(n+1)(n^2+1),30=2x3x5,由于n-1,n,n+1中一定有2的倍数和3的倍数,只需证n^5-n可被5整除当n-1,n,n+1中有5的倍数时,显然成立当n-1,n
n=1时,是显然的设n=k时成立则n=k+1时1-(x+3)^(k+1)=1-(x+3)(x+3)^k=1-(x+3)+(x+3)-(x+3)(x+3)^k=-(x+2)+(x+3)(1-(x+3)^
题目应该是打错了,1×2×3×4+1=25被25整除,但25不是质数.正确的叙述是若1×2×3×...×(m-1)+1被m整除,则m为质数.证明不难,用反证法.假设m不是质数,则存在1和m以外的约数,