设n阶方阵A满足关系证明A是可逆的,
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/21 02:00:17
证明:设a是A的特征值则a^2-2a是A^2-2A的特征值因为A^2-2A=0所以a^2-2a=0所以a(a-2)=0所以a=0或a=2.即A的特征值只能是0或2.
因为A^2-4A+3E=0所以A(A-2E)-2(A-2E)-E=0所以(A-2E)(A-2E)=E所以A-2E可逆所以2E-A可逆所以B=(2E-A)^T(2E-A)是正定矩阵--正定合同于单位矩阵
证明:因为A*A-A-2E=0,所以A(A-E)=2E或A(E-A)=-2E..所以A和E-A可逆,且A^-1=(1/2)(A-E),(E-A)^-1=(-1/2)A.满意请采纳^_^
Only_唯漪的证法我好像没有看懂的样子……果然代数都忘光了,这里给出一种Jordan标准型的证法参考一下:——————————————————————————————————————————∵R(E
A^2=E==>A^2-E=0==>(A+E)(A-E)=O|A+E|≠0所以A+E可逆那么方程(A+E)x=0只有0解也就是说A-E的每一列都是0,所以A-E=O
汗啊,是平方啊…………我以为是伴随呢…………A²-A+E=0E=A-A²=A(E-A)(E-A)A=A-A²=E所以A可逆,逆矩阵是E-A
(A+E)^3=A^3+3A^2+3A+E=0A(A^2+3A+3E)=-E所以A可逆,A^-1=-(A^2+3A+3E)
只需证明|3E-A|=0,由已知...(A满足的条件),则3是A的一个特征值,故|3E-A|=0,从而3E-A不可逆.
AB=A-BAB-A+B-I=-I(A-I)(B+I)=-I(B+I)(A-I)=-IBA-A+B-I=-IBA=A-B所以AB=BA
证明:由A^2=En得0=A^2-En=A^2-En^2=(A+En)(A-En)因为|A+En|≠0,故A+En必有逆矩阵(A+En)^(-1),上式两边左乘(A+En)^(-1),便得(A+En)
[A+E]=[A+A*A']=[A][E+A']=[A][(A+E)']=[A]*[A+E]得到(1-[A])[A+E]=0因为|A|
因为A^2-A-2E=0所以A(A-E)=2E所以A-E可逆,且(A-E)^-1=(1/2)A.
证:由已知,A^2=E,(A+E)(A-E)=0所以r(A+E)+r(A-E)
A*A-A-2i=0也就是(A-2I)(A+I)=0取行列式得|A-2I||A+I|=0也就是|A-2I|、|A+I|中必有一个为0那就不可逆了
假设A+E不可逆,则|A+E|=0所以-1是A的一个特征值设ξ是属于-1的一个特征向量则A^2ξ=A(-ξ)=-Aξ=ξ但A^2=A所以A^2ξ=Aξ=-ξ矛盾
AB=0左右取行列式得|A||B|=0所以|A|=0或|B|=0
要这样来理解把矩阵分为两类讨论,第一类是单位阵(这类显然),第二类不是单位阵(这类的目标是证明不可逆),在第二类中使用反证法.反证法的讲法存在一步逻辑跳跃,不过这步太显然了,不算是什么问题.
设a为矩阵A的特征值,X为对应的非零特征向量.则有AX=aX.aX=AX=A^2X=A(AX)=A(aX)=aAX=a(aX)=a^2X,(a^2-a)X=0,因X为非零向量,所以.0=a^2-a=a
证明假定A可逆,其逆阵为BE=AB两边同时乘以A得A=AAB=AB于是A=E故A或者不可逆,或者为单位阵E再问:这只证明了A为单位矩阵啊再答:假定A可逆,则必为单位阵;或者不可逆这不就是要证明的结论吗