设n阶方阵A的伴随矩阵为A*,证明|A*|=|A|^n-1

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 20:22:51
设n阶方阵A的伴随矩阵为A*,证明|A*|=|A|^n-1
设A为n阶方阵,detA=2,A*为A的伴随矩阵,求det[A*+A逆]=?

IAIA逆=A*=2A逆所以A*+A逆=3A逆所以det[A*+A逆]=3^n/IAI=3^n/2

设A*是n阶方阵A的伴随矩阵,|A|=d,则||A|A*|=________

||A|A*|=|A|^n|A*|=|A|^n|A|^(n-1)=|A|^(2n-1)用到了几个结论:1.|kA|=k^n|A|2.|A*|=|A|^(n-1)

线性代数题:设A为n阶方阵,A*是A的伴随矩阵,如果/A/=a≠0,则/A*/=()

|A|=a≠0那么A可逆,A(-1)表示A的逆矩阵A(-1)=A*/|A|A*=|A|A(-1)AA*=|A|E(E为单位矩阵)|A||A*|=||A|E|=|A|^n|A*|=|A|^(n-1)=a

设A为4阶方阵,A的秩为2,求A伴随矩阵A*的秩.

秩为0因为4阶矩阵A的秩为2,所以它的三阶子式一定全为0,(否则秩会为3)既然三阶子式全为0,那么按照伴随矩阵的定义:它的元素全为0,即为0矩阵.故秩为0

设A为4阶方阵,A*为A的伴随矩阵,且/A*/=8,求/A/

利用关系式|A*|=|A|^(n-1),可得知|A|=2.经济数学团队帮你解答,请及时采纳.

设A为n阶方阵,detA=1/3,A*为A的伴随矩阵,求det[A*+(1/4A)逆]=?

A^(-1)=A*/|A|=3A*A*=|A|A^(-1)=1/3A^(-1)|A*+(1/4A)^(-1)|=|A*+4A^(-1)||=|A*+12A*|=|13A*|=|13/3A^(-1)|=

若n阶方阵A的伴随矩阵为A*,证明|A|=0

确实缺少条件A的伴随矩阵,通常就是用A右上角*表示的.有这样的关系:若A非退化,则A*(A伴随)=det(A)*E.E为单位矩阵.从而有det(A)*det(A伴随)=det(A)^n.所以det(A

设A为n阶方阵,且|A|=2,A*为A的伴随矩阵,则|A*|=?

设B为A的伴随矩阵,E为单位阵,AB=|A|E,|A||B|=|A|^n,|B|=|A|^(n-1)

设A为三阶方阵,且|A|=2,A*为A的伴随矩阵,|3A*|=?

A*=|A|A^(-1)=2A^(-1)由|A|=2知|A^(-1)|=1/2|3A*|=|6A^(-1)|=6³|A^(-1)|=6³×1/2=108A^(-1)表示A的逆矩阵

设n阶方阵A的行列式|A|=0,且伴随矩阵A*≠0,则秩(A)=

n-1因为R(A)必定小于n而A*是各n-1阶子式组成的矩阵其不为0说明A比能取到至少1个不为0的n-1阶子式故R(A)=n-1

设n阶方阵A可逆,A^*为A的伴随矩阵,证明|A^*|=|A|^n-1

A乘以A^*等于对角线全是|A|的对角矩阵.所以|A*A^*|=|A|*|A^*|=|A|^n.所以|A^*|=|A|^n-1

设A是(n≥2)阶方阵,A*是A的伴随矩阵.证明:

1)r(A)=n等价于det(A)≠0等价于det(A*)=1等价于A*可逆等价于r(A*)=n2)

设A*为n阶方阵A的伴随矩阵,则AA*=A*A=

这是一个基本公式,AA*=A*A=|A|E,其中E是单位阵.经济数学团队帮你解答,请及时采纳.

设A为n阶方阵,A的行列式为0是A的伴随矩阵的行列式为0的什么条件

充要条件A的行列式为0《=====》A的伴随矩阵的行列式为0可以参考伴随矩阵的秩的性质

设n阶矩阵A的伴随矩阵为A* 证明:|A*|=|A|^(n-1)

大家都不帮你我来帮你因为AA*=|A|E,两边同时乘A逆,有A*=|A|A逆,两边同时取行列式,有|A*|=||A|A逆|=|A|^(N)|A逆|又因为|A逆|=|A|分之一(这个就不用给你推了吧.A