设n阶矩阵A=(aij),aij=i-j,求A的行列式

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 16:23:09
设n阶矩阵A=(aij),aij=i-j,求A的行列式
A是n阶非零矩阵,A*是其伴随矩阵,且满足aij=Aij,证明A可逆

n=2的时候直接把A*写出来验证n>2的时候看A*的秩就行了,A^T=A*=>rank(A^T)=rank(A*),只有零矩阵和满秩矩阵才满足这一点.还有一种方法是利用(A*)*=|A|^{n-2}A

设A=(aij)是三阶非零矩阵,|A|为其行列式,Aij为元素aij的代数余子式,且满足Aij+aij=0(i,j=1,

由条件Aij+aij=0(i,j=1,2,3),可知A+A*T=0,其中A*为A的伴随矩阵,从而可知|A*|=|A*T|=|A|3-1=(-1)3|A|,所以|A|可能为-1或0.但由结论r(A*)=

设A=(aij)3*3为非零实矩阵,aij=Aij,Aij 是行列式|A|中元素aij的代数余子式,则行列式|A|

因为aij=Aij,所以|A|=|A*|由A^(-1)=A*/|A|得|A|A^(-1)=A*两边取行列式|A|³|A^(-1)|=|A*||A|³/|A|=|A||A|=1

设A为n阶奇异矩阵,A中有一元素aij的代数余子式Aij,则齐次线性方程组Ax=0的基础解系所含向两个数为?

提问意义不明Aij怎么了什么叫所含向两个数我的猜测:Aij不等于0那么(Ai1,Ai2,..,Ain)为Ax=0的一个非零解

设A=(aij)nxn是正交矩阵,且A的行列式大于零,Aij是aij的代数余子式(i,j=1,2,.n),证明:Aij=

由A正交得AA'=E.即A^(-1)=A'.等式两边求行列式得|A|^2=1.由已知A的行列式大于零,所以|A|=1.所以有AA*=|A|E=E.所以A^(-1)=A*.所以A*=A'.即Aij=ai

设A=(aij)为正交矩阵,且绝对值A=1,试证Aij=aij,这里Aij是A中元素aij的代数余子式?

对比A^T的各个元素即得Aij=aij再问:Aij是代数余子式,而aij只是一个数,它们的计算结果明显不同,还是不懂,能解释一下吗再答:代数余子式是一个数值

设方程组的系数矩阵为A=[aij]n*n,且行列式|A|=0,而|A|中某一元素aij的代数余子式Aij不等于0,证明,

因为‍‍Aij不等于0,所以r(A)=n-1,AX=0的解的线性无关的个数为n-r(A)=1又因为AA*=|A|E=0,所以A*的列向量都是AX=0的解,所以方程组的通解可表示

设A=(aij)为n阶矩阵,试分别求出A的平方,AAT,ATA的(k,l)元素

A^2=求和符号(下面i=0,上面i=n)(akiail)AAT=求和符号(下面i=0,上面i=n)(akiali)ATA=求和符号(下面i=0,上面i=n)(aikail)再问:亲有过程么?答案我知

1.用数学归纳法求矩阵:【000 100 010】2.证明矩阵乘法分配率 3设A=n阶方阵[aij]=a11+a22+.

1:这个问题是什么?2:取(A*B)*C中任意一个元素,和A*(B*C)中下标对应的元素比较,可以看到其表达式完全相同,得证!3:利用性质trA=trB,如果A,B互为转置,记为A'=B利用分量表示的

线性代数的证明题设n阶矩阵A=(aij)的特征值为 λ1, λ2, …… λn,证明:(1)λ1 +λ2 +……+λn=

特征方程|λEn-A|=0的根为λ1,λ2,…λn则|λEn-A|=(λ-λ1)(λ-λ2)…(λ-λn)=λ^n-(∑λi)λ^(n-1)+…+(-1)^n(∏λi)取λ=0,即得|-A|=(-1)

线性代数题目设4阶矩阵A=(a1,a2,a3,a4) ,向量β=(1,1,1,1)T,又设Aij是矩阵A中元aij(i,

由行列式的基本性质和题意得:|3a1-2β,a2,a3,a4|=3|a1,a2,a3,a4|-2|β,a2,a3,a4|=6-2=4再问:请问为什么|β,a2,a3,a4|=1呢?再答:你把代数余子式

三阶矩阵A=(aij)3x3的特征值为2,3,4 ,Aij为行列式A中元素aij的代数余子式,求 A11+A22+A33

由已知,|A|=2*3*4=24所以A*的特征值为12,8,6所以A11+A22+A33=12+8+6=26

设n阶矩阵A=(aij),其中aij=|i-j|,求|A|

所求行列式=012…n-2n-1101…n-3n-2210…n-4n-3……………n-2n-3n-4…01n-1n-2n-3…10rn-r(n-1),r(n-1)-r(n-2),…,r2-r1012…

证明,如果n阶实对称矩阵A=(aij)n*n是正定的,则aii>0

证:由A正定,对任意非零n维列向量x,都有f(x)=x'Ax>0.特别取x=εi=(0,...,0,1,0,...,0)',--第i个分量为1其余为0则有f(εi)=εi'Aεi=aii>0.

n阶矩阵A=(aij)n×n.其中aij=1 i.j=1 2…n.证明A可对角

n阶矩阵A=(aij)n×n.其中aij=1i.j=12…n.说明A的元素全为1,它显然是对称的,而对称矩阵必定可以对角化(一般教材中均有此结论)但是我猜提问者还会不满足,那么就展开多说几句:如果能够

设A=(aij)n×n是上三角矩阵,A的主对角线元相等,且至少有一个元素aij≠0,证明A不能 .

记λ=a11,那么A的所有特征值都是λ如果A可对角化那么A相似于λI,但是与λI相似的矩阵只有其本身

高等代数行列式问题n阶矩阵A=(aij),aii=a,aij=b/2(j=n-i+1),其余aij=0.求det(A)的

刚才在纸上画了一下,但是现在没心情慢慢的给你敲一个行列式出来只能告诉你,首先,分两种情况,第一n=2k第二n=2k+1,此时a=b/2然后分别求都是设N阶行列式的值为f(n),然后展开,得到一个递推公

设A=(aij)n*n为实矩阵,n元二次型f(x1,x2,...,xn)=(ai1x1+ai2x2+...+ainxn)

证明:设αi=(ai1,...,ain)--A的第i行则A=(α1;...;αn)--竖着写,分号表示换行则A^T=(α1^T,...,αn^T)所以A^TA=(α1^T,...,αn^T)(α1;.