设p是椭圆c上一点,且点p与椭圆c的两个焦点f1f2构成一个直角三角形,且

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 02:05:01
设p是椭圆c上一点,且点p与椭圆c的两个焦点f1f2构成一个直角三角形,且
已知P是椭圆上的一点,F是椭圆的左焦点,且,则点P到椭圆左准线的距离

连接点P和椭圆的右焦点(不妨记为F2)由向量OQ=1/2(OP向量+OF向量)可知Q为PF的中点.又点O为FF2的中点,所以OQ为三角形FPF2的中位线所以PF2=2OQ=8,所以PF=2a-PF2=

设P(x,y)是椭圆x2/25+y2/16=1上的点且P的纵坐标y≠0,

已知,椭圆的长轴为5,那么A、B在椭圆的左右端点上.设点p的坐标为:x=5cosa,y=4sina,则,x,y满足椭圆方程.Kpa*Kpb=[(4sina-0)/(5cosa+5)]*[(4sina-

如图,在三角形ABC中,∠C=90°,P是AB上一点,且点P与点A不重合,过点P作PE⊥AB,若AB=10,AC=8,设

∵在△ABC中,∠C=90°AB=10,AC=8,∴BC=6.∵EP⊥AB且∠A为公共角,∴△AEP∽△ABC,∴AE/AB=AP/AC=EP/BC.∵AP=x,∴AE/10=x/8=PE/6,即AE

若过点m(2.0)的直线与椭圆c相交于两点a,b.设p 为椭圆上一点,且满足oa向量加ob向量等于

再问:有点慢再问:一带正电的粒子其重力不计,且电荷量为q,质量为m,以速度v从坐标原点沿着y轴正方向射入磁感应强度为b的圆形匀强磁场区域,磁场方向垂直纸面向外,粒子飞出磁场区域后,从b处穿过x轴进入场

已知P是椭圆x^2/a^2+y^2/b^2=1(a>b>0)上任意一点,点F为其右焦点,设其焦距为2c,求证a-c

a>b>0,点F为其右焦点P(x,y),c>0|PF|^2=(x-c)^2+y^2根据椭圆的性质,P在X轴上即x=-a,y=0,|PF|有最大值=a+cx=a,y=0,|PF|有最小值=a-c∴a-c

设F1,F2是椭圆x^2/25+y^2/16=1的两个焦点,点P是椭圆上任意一点.

1、a=5,由椭圆定义PF1+PF2=2a=10平方PF1²+PF2²=100-2PF1PF2c²=a²-b²=25-16=9故c=3余弦定理(2c)

已知椭圆的焦点是F1(-1,0),F2(10),P是椭圆上一点,且F1F2是PF1与PF2的等差中项

1、可设椭圆方程为(x²/a²)+(y²/b²)=1,(a>b>0).由题设知,|PF1|+|PF2|=2a=2|F1F2|=2×2.===>a=2.又c=1,

椭圆焦点F1(-1,0)F2(1,0),P为椭圆上一点,且|F1F2|是|PF1|,|PF2|的等差中项2 若点P

2c=|F1F2|=2∴c=12|F1F2|=|PF1+PF2|=2a∴4=2a∴a=2∴b²=a²-c²=4-1=3椭圆方程:x²/4+y²/3=1

已知椭圆C:X^2/2+Y^2=1.若过点M(2,0)的直线与椭圆C交于两点A、B,设P为椭圆上一点,且满足向量OA+向

我想思路是设AB方程y=k(x-2),联立AB方程与椭圆方程,利用韦达定理表示出AB的长度,长度

设p是椭圆x^2/25+y^2/9=1上的一点动点,F是它的左焦点,且OM=1/2(OP+OF),OM=4,求p到该椭圆

这个题用椭圆的参数方程来求,事半功倍设p(5cost,3sint)f(-4,0)om=1/2(5cost-4,3sint)|om|^2=1/4[(5cost-4)^2+9(sint)^2]=16解得c

设F1F2分别是椭圆x2/25+y2/16=1的左右焦点,p是椭圆上一点,M是F1P的中点,OM=2,求点P到椭圆左焦点

因为om=2,且F1O=OF2.所以,在三角形F1PF2中om为中位线,即2om=PF2=4又因为|PF1|+|PF2|=2a=10.所以,PF1=10-PF2=6.

已知椭圆X^2/25+Y^2/16=1,右焦点F,Q,P分别是椭圆上一点和椭圆外一点,且Q为FP中点,则P点的轨迹方程为

c^2=a^2-b^2=9F(3,0)Q为FP中点设P(m,n)所以Q((3+m)/2,n/2)Q在椭圆上带入x^2/25+y^2/16=1得(m+3)^2/100+n^2/64=1

设P是曲线C:y=-1/3x³+x²-2x+a上一点,且曲线C在点P处的切线的倾斜角位a,求a的取值

1、y'=x²+2x-2=(x+1)²-3≧-3即:k=tana≧-3得:a∈【0,π/2)U【π+arctan(-3),π)2、f'(x)=1/x,g'(x)=ax+21/x>a

P(x,y)是椭圆x^2/25+x^2/16=1上一点且点P的纵坐标y不等于0

设P(x,y)三角代换令x=5cosθy=4sinθPA斜率kPA=(4sinθ)/(5cosθ+5)PB斜率kPB=(4sinθ)/(5cosθ-5)kPA*kPB=(16/25)*(sinθ)^2