设P点在直线X 3Y=0上

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 22:31:06
设P点在直线X 3Y=0上
点P在直线x+y-2=0上,O为原点,求|OP|最小值

设P点坐标为(x,2-x),OP的距离为√[x²+(2-x)²]=√[2(x-1)²+2]最小值为√2再问:为什么可以设(X,2-X)。。再答:因为点P在直线x+y-2=

设抛物线y2=2px(p>0)的焦点为F,经过点F的直线交抛物线于A、B两点,点C在抛物线的准线上,且BC∥x轴.证明直

证明:如图因为抛物线y2=2px(p>0)的焦点为F(p2,0),所以经过点F的直线的方程可设为x=my+p2;代入抛物线方程得y2-2pmy-p2=0,若记A(x1,y1),B(x2,y2),则y1

若动点P在直线L1:X-Y-2=0上,动点Q在直线L2:X-Y-6=0上,设线段PQ的中点为M(X0,Y0),且 (X0

直线x-y-2=0与直线x-y-6=0平行,PQ中点M在直线x-y-4=0上,x0-y0=4;又(x0-2)^2+(y0+2)^2≤8,x0^2-4x0+4+y0^2+4y+4≤8x0^2+y0^2≤

设抛物线C:y=x^2的焦点为F,动点P在直线L:x-y-2=0上运动,过P作抛物线C的两条切线PA、PB,且与抛物线分

y=x^2==>p=1/2设:A(x1,x1^2),B(x2,x2^2)根据抛物线的切线公式得:AP的方程是:2x1x-y-x1^2=0----------------------------(1)B

设抛物线C:Y=X?的焦点为F,动点P在直线L:X-Y-2=0上运动,过P作抛物线c的两条切线PA,PB,且与抛物线C分

三角形APB的重心G的轨迹方程是:y=1/3(4x^2-x+2)这里打不下,看这个回答就可以

(2012•泰州二模)若动点P在直线l1:x-y-2=0上,动点Q在直线l2:x-y-6=0上,设线段PQ的中点为M(x

因为动点P在直线l1:x-y-2=0上,动点Q在直线l2:x-y-6=0上,设线段PQ的中点为M(x1,y1),所以M在直线x-y-4=0,又M满足(x1-2)2+(y1+2)2≤8,所以M的轨迹是直

若动点P在直线l1:x-y-2=0上,动点Q在直线l2:x-y-6=0上,设线段PQ的中点为M(x0,y0),且满足(x

∵直线l1:x-y-2=0与直线l2:x-y-6=0互相平行,动点P在直线l1上,动点Q在直线l2上,∴PQ的中点M在与l1、l2平行,且到l1、l2距离相等的直线上,设该直线为l,方程为x-y+m=

已知在平面直角坐标系中,点Q 的坐标为(4,0),点P是直线y=-2x+3上在第一象限内的一点。设三角形OPQ的面积为S

解题思路:利用一次函数的图象找出Y的取范围,并可以求出三角形的面积。解题过程:解:∵点P的坐标为(x,y),点Q的坐标为(4,0)∴△POQ的面积S=1/2OQ∙y=2y(S是y的正比例函数)由直线y

已知一动圆过定点P(1,0),且与定直线l:x=-1相切,点C在l上.设过点P,且斜率为-√3的直

亲爱的同学,你的问题题意不明(“题意不明”的表现为:题目表述不清晰,不能表达完整题意...)请核实你的提问内容,老师会等待你的新回复,

在极坐标系中,已知A(1,π/2),点P是曲线psin^2θ=4cosθ上任意一点,设P到直线pcosθ+1=0的距离为

A(1,π/2)由ρ²=x²+y²,tanθ=y/x∴A(1,0)psin²θ=4cosθ=>(ρsinθ)²=4cosθρ=>y²=4x焦

设P(x0,y0)为曲线y=x²(x>0)上的点,且曲线C在点P处的切线,直线x=x0,y=0所围图形面积的变

y=x^2y'=2xP(x0,y0)切线方程为y-y0=2x0(x-x0)令x=0得,y=y0-2x0^2所围图形面积=1/2*(|y0|+|y0-2x0^2|)*x0=1/2*(|x0^2|+|x0

设椭圆C:x²+2y²=100.若点P在椭圆C上,求点P到直线3x-4y-20=0的距离的最大值

设与直线3x-4y-20=0平行且与椭圆C:x²+2y²=100.相切的直线为:y=3x/4+b,解方程Δ=0,b=±5√17/2,切点(-30√17/17,20√17/17)和(

设抛物线y平方=2px(p>0)的焦点为F,经过点F的直线交抛物线与A.B两点,点C在抛物线的准线上,且BC平行x轴,证

设A(x1,y1),B(x2,y2),则C(-p/2,y2)设直线AB:x=ky+p/2,代入y^2=2px得y^2-2pky-p^2=0所以y1y2=-p^2,y2=-p^2/y1OA的斜率为k1=

已知点A(0,3)和点B(0,1),若一个动点P从点B出发,先到达x轴上的某点(设为点E),在到达直线x=2上的某点(设

  A关于X=2的对称点为A`(4,3),B关于X轴的对称点B`(0,-1),连接A`B`,交X轴于E,交直线X=2于F设X=2与X轴交于M,OM=2,过A`作A`N垂直X轴于N,