设Sn表示等差数列an的前n项和,已知S5S10=25,那么S10S20等于
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 09:46:23
前16项和最大.因为等差数列前n项和是关于n的二次函数,设为f(n).已知f(13)=f(19),所以对称轴n=(13+19)/2=16
Sn=[(a1+a1+(n-1)d]*n/2=[2a1+(n-1)d)]*n/2Sm/m={[2a1+(m-1)d)]*m/2}/m=a1+(m-1)d/2Sn/n=a1+(n-1)d/2Sp/p=a
你数列当中的第五个元素
设第一项为:a1,公差为:d1、S15>0可得到a1>-7d2、a8+a9
等差数列{an}的首项为a1,公差为ds3=9a1+a2+a3=9a1+a1+d+a1+2d=93a1+3d=9a1+d=3a2=3a9=17a2+7d=177d=14d=2a1=1an=1+(n-1
因为S5>S6所以a1+a2+a3+a4+a5>a1+a2+a3+a4+a5+a6所以a601.2a3=a1+a53a4=a1+a7+a42a3-3a4=d-a1-6d=-(a1+5d)=-a6>0(
因为a1=S1=(a1+12)2,所以 a1=1.设公差为d,则有a1+a2=2+d=S2=(2+d2)2.解得d=2或d=-2(舍).所以an=2n-1,Sn=n2.所以 bn=
∵{an}为等差数列,其前n项之和为Sn,∴S2n-1=(2n−1)(a1+a2n−1)2=(2n−1)×2an2=(2n-1)•an,同理可得,S′2n-1=(2n-1)•bn,∴anbn=S2n−
S2013=2013(a1+a2013)/2因为a1+a2013>0所以S2013>0S2014=2014(a1+a2014)/2因为a1+a2014
答:1设an,bn的公差分别为d1,d2,Sn=na1+n(n-1)d1/2,Tn=nb1+n(n-1)d2/2,令S(n+3)=(n+3)a1+(n+3)(n+2)d1/2=Tn=nb1+n(n-1
证:第一种方法Sn+1=(n+1)[a1+a(n+1)]/2Sn=n(a1+an)/2Sn-1=(n-1)[a1+a(n-1)]/2a(n+1)=Sn+1-Sn=(n+1)[a1+a(n+1)]/2-
S4=4a+6d>=10所以-4a-6d
(Ⅰ)当q=1时,S3=3a1,S9=9a1,S6=6a1,∵2S9≠S3+S6,∴S3,S9,S6不成等差数列,与已知矛盾,∴q≠1.(2分)由2S9=S3+S6得:2•a1(1−q9)1−q=a1
S12>0,S1307d+24>0d>-24/7S13=(a1+a1+12d)*13/2=(2a1+12d)*13/2=13(a1+6d)=13(a1+2d+4d)=13(a3+4d)=13(12+4
设公差为dS12=(a3+a10)*6=(2a3+7d)*6=(24+7d)*6>0S13=a7*13=(a3+4d)*13=(12+4d)*130且12+4d
a(n)=a+(n-1)d=a+[n(n-1)-(n-1)(n-2)]d/2,s(n)=a(1)+a(2)+a(3)+...+a(n-1)+a(n)=na+(d/2)[0-0+2*1-0+3*2-2*
/>n≥2时,an=Sn/n+2(n-1)Sn=nan-2n(n-1)S(n-1)=(n-1)an-2(n-1)(n-2)Sn-S(n-1)=an=nan-2n(n-1)-(n-1)an+2(n-1)
由题意可得S13S7=13(a1+a13)27(a1+a7)2=13(a1+a13)7(a1+a7)=13×2a77×2a4=137×a7a4=137×2=267.故答案为:267
Sn=n(A1+An)/2设Bn=Sn/n=(A1+An)/2Bn-B(n-1)=(A1+An)/2-[A1+A(n-1)]/2=[An-A(n-1)]/2=d/2=常数∴{Sn/n}是等差数列
在等差数列{an}中,a1+an=a2+a(n-1)=a3+a(n-2)=a4+a(n-3)=a5+a(n-4),又前n项和的公式为Sn=n(a1+an)/2,∴Sn=n[a5+a(n-4)]/2,由