设u=f(x^2 y^2 z^2),其中f有连续导数
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 05:27:24
令u=x-y,v=y/xaz/ax=az/au×au/ax+az/av×av/ax=fu-y/x^2×fva^2z/axay=a(az/ax)/ay=a(fu-y/x^2×fv)/ay=a(fu)/a
这是复合函数的导函数的利用δz/δx=2xyf'/f²δz/δy=[f+yf'(-2y)]/f²=(f-2y²f')/f²1/x×δz/δx+1/y×δz/δy
F对各分量的偏导依次记为F1,F2,F3.方程对x求偏导得F1·(2u·∂u/∂x-2x)+F2·2u·∂u/∂x+F3·2u·∂u/
∂r/∂x=2x/√(x^2+y^2+z^2)∂r/∂y=2y/√(x^2+y^2+z^2)∂r/∂z=2z/√(x^2+y^2
x^2+y^2+z^2-3xyz=0两边对x求偏导,2x+2z*dz/dx-3yz-3xydz/dx=0从中解得:dz/dx=(3yz-2x)/(2z-3xy)(1)同理:dz/dy=(3xz-2y)
由柯西不等式(a^2+b^2+c^2)(x^2+y^2+z^2)>=(ax+by+cz)^2,得((1/√2)^2+(1/√3)^2+1)(2x^2+3y^2+z^2)>=(x+y+z)^22x^2+
这是求偏导数.偏u/偏x=fx'dx+fz'*偏z/偏x=fx'dx+fz'*x/[(x^2+y^2)^0.5],偏u/偏y=fy'dy+fz'*偏z/偏y=fy'dy+fz'*y/[(x^2+y^2
两边对x求导1-a*δz/δx=f'(y-bz)*(-bδz/δx)整理得:[a-bf'(y-bz)]δz/δx=-1两边对y求导-a*δz/δy=f'(y-bz)*(1-bδz/δy)整理得:[-a
эu/эx=f'(r)*эr/эx=f'(r)*x/rэ^2u/эx^2=f''(r)*(x/r)^2+f'(r)*(r-x*x/r)/r^2=f''(r)*(x/r)^2+f'(r)*(r^2-x^
z=f(√(x^2+y^2))设u=√(x^2+y^2).u'x=x/uu'y=y/u1.z'x=f'(u)x/u,z''xx=[uf'(u)-x^2f'(u)/u+x^2f''(u)]/u^2z'x
δu/δx=-sin(2x+y+z)(2+δz/δx)δz/δx=-(2xy-2xz-1)/(-x²)=(2y-2z-1)/x将已知值代进去即可得偏导再问:为什么δu/δx=-sin(2x+
ux=2x/(x^2+y^2+z^2)uy=2y/(x^2+y^2+z^2)uz=2z/(x^2+y^2+z^2)故du=uxdx+uydy+uzdz=2x/(x^2+y^2+z^2)dx+2y/(x
dz/dx=dz/du*(du/dx)=2u*1=2udz/dy=dz/du*(du/dy)=2u*1=2u和v没关系
本题的解答,需要说明一下:1、因为函数f是x+y的函数,也就是复合关系: f是u 的函数,而u=x+y;2、无论是对x求导,还是对y求导,都得先对u&nbs
∂z/∂x=-((∂f/∂x)*y*2x)/f^2∂z/∂y=1/f+2y2*(∂f/∂y)/f^21/
这个是多个参数的全微分的求法du=(2xdx+2ydy+2zdz)/(x^2+y^2+z^2)
由链式法则知道:再问:就你懂我是什么意思了!!激动地哭死!!但是答案错了。。答案4xyf“(u)再答:怎么求偏导都不会有xy这一项,因为(x^2+y^2)对x求偏导,y就消失了,除非你求混合导就是这个
首先du/dx=z+x*dz/dx而Z=Z(x,y)由方程x²z+2y²z²+y=0确定,对x求导得到2xz+x²*dz/dx+2y²*2z*dz/d
令u=e^x*siny,则z=f(u)∂z/∂x=∂z/∂u*∂u/∂x=f'(u)*e^x*siny=uf'(u),ͦ