设U是可逆矩阵,A=U的转置乘以U,求证f=x的t次方乘以A乘以x为正定二次型
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 17:15:45
写出A的实对称分A=QDQ^T,Q正交,D对角,且D=diag(a1E,...,akE),ai是互不相同的特征值.对应的B分块,AB=BA知道对应的Q^TBQ是块对角阵,每一个对角块都是反对称的,而a
提示:可逆矩阵可以看成若干初等矩阵的乘积.用等价矩阵秩相等去证.
因为A,B可逆所以A=AB^-1B令U=AB^-1则A=UB且|A|=|B||A|=|UB|=|U||B||U|=1
由于(A+2E)(A-2E)=A^2-4E=-3E,所以(A+2E)(-A/3+2E/3)=E,因此A+2E可逆.
设矩阵A满足A^2=E.===>(A+2E)(A-2E)=5E===>A+2E的逆矩阵为0.2(A-2E).
提示:是正定对称矩阵.于是由习题2存在正定矩阵S,使得=.再看一下U应该怎样取.]
若A不可逆,则|A|=0.因为AA*=|A|E,所以AA*=0,又A*可逆,则A=0,这与A*可逆矛盾.所以A可逆
设α是A的特征值2的特征向量,则Aα=2α又A可逆∴α=2A-1α,即A−1α=12α∴(13A)−1α=3A−1α=32α∴32是矩阵(13A)−1的一个特征值.
AA^*=|A|E说明AA^*的第一行第一列元素等于|A|E的第一行第一列的元素,而|A|E的第一行第一列的元素为|A|,而AA^*的第一行第一列的元为a11^2+a12^2+...+a1n^2,其他
如果A=U'U,则A'=(U'U)'=U'U=A,故A是对称的,对任意非零x,由U可逆,Ux也非零,由x'Ax=x'U'Ux=(Ux)'(Ux)>0,故A是正定矩阵.充分性得证.如果A为对称正定矩阵,
∵C是n阶可逆矩阵∴C可以表示成若干个初等矩阵之积,即C=P1P2…Ps,其中Pi(i=1,2,…,s)均为初等矩阵.而:B=AC,∴B=AP1P2…Ps,即B是A经过s次初等列变换后得到的,又初等变
由于C可逆,所以r(AC)=r(A)即有r=r1故(C)正确.
转置?共轭转置?还是其他的?因为不同教材用的上标不一样.如果是共轭转置的话,本题就很简单啊因为U是酉矩阵,所以U*U'=E(E是单位阵)这样一来f(U)=U*U'=E不管U是什么形式f(U)都是一个单
1.A不可逆|A|=0AA*=|A|E=O假设|A*|≠0则A=O显然A*=O,与假设矛盾,所以|A*|=0即|A*|=|A|n-1=02.A可逆|A|≠0AA*=|A|EA*也可逆又|AA*|=||
如果(A2)-1意思是(A^2)^-1,则矩阵(A2)-1必有一个特征值等于1/4.设X是λ=2对应的特征向量,则AX=2X,A^2X=AAX=2AX=4X,即A^2X=4X,故得(1/4)X=(A^
Ax=ax,x非零,取范数得|a|||x||=||Ax||
考虑分块矩阵B=[A,-U;V',Em],P=[En,U;0,Em],Q=[En,A^(-1)U;0,Em].可知P,Q可逆,故r(PB)=r(B)=r(BQ).而PB=[A+UV',0;V',Em]
AA*=!A!E不等于0故:A*可逆.A*A/!A!=E(A*)^(-1)=A/!A!!表示绝对值.
知识点:U是正交矩阵U的列向量组是标准正交向量组U的行向量组是标准正交向量组当i不等于j,=0(两两正交)当i=j,=1(长度为1).=-+-=1-0+0-1=0.