设v为n维线性空间,其中n>1,证明v的r维子空间有无穷多个
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 13:19:12
题目是不是这样V={(a,b,a,b,...,a,b)|a,b属于P};V是由所有(a,b,a,b,...,a,b)这样的向量构成的.再问:是的。再答:首先你要理解V的含义,即V中元素是这样的向量α=
先取V的一组基{e},这样就可以用具体的坐标来描述所有的东西假定m=dim(W1),k=dim(W2)=n-m,只需讨论m和k都非零的情况,余下的是平凡的取W1的一组基,这组基在{e}下的坐标表示是一
证:设k0α+k1Aα+k2A^2α+…+k(n-1)A^(n-1)α=0(*)等式两边左乘A^(n-1),由A^nα=0得k0A^(n-1)α=0而A^(n-1)α≠0,所以k0=0.代入(*)式得
(1)两个子空间的和是直和只需要证明它们的交只有零向量.设Y∈ker(A)∩im(A),则AY=0且存在X使Y=AX.∵A²=A,∴Y=AX=A²X=A(AX)=AY=0.即ker
基本上忘光了,只能给你建议个思考方向.多项式矩阵和Jordan标准型
线性空间是定义两种封闭运算的满足八条基本性质的非空集合,W为数域F上的n维线性空间V的子集合,所以W满足八条基本性质.所以只有W的运算封闭,就是线性空间.0+0=0,k0=0再问:谢谢你,你能帮我回答
设V是数域K上的n维线性空间,可知V同构于向量空间K^n,故只需讨论V=K^n的情形.考虑V的子集S={(1,a,a^2,a^3,...,a^(n-1))|a∈K}.K作为数域,总是无限集,故S也是无
太累了,/>再问:谢谢~太有才啦~怎么想到这么做呢?就是看到这个题首先想到什么?为什么就从这个角度去做呢?
一个基是diag(1,0,...,0),diag(0,1,0,...0),.,diag(0,0,0,...,1)维数为n
第一问:设ξ是线性变换T的任一个特征向量,对应的特征值是λ,则有Tξ=λξ,两边左边用T作用,得T^2(ξ)=T(Tξ)=λTξ=λ^2ξ,而由已知,T^2=I,故λ^2ξ=ξ,因为ξ≠0==>λ^2
你好!很高兴为你解答,~如果你认可我的回答,请及时点击【采纳为满意回答】按钮~~手机提问者在客户端右上角评价点“满意”即可.~~你的采纳是我前进的动力~~祝你学习进步!有不明白的可以追问!谢谢!~
设V是数域P上的n维线性空间,W是V的一个s维子空间,那么,取定W的一个基:E1,E2,...,Es,将W的这个基扩充为V的一个基,记为,E1,E2,...,Es,Es+1,...,En现在我们构造一
证:设k0a+k1B(a)+k2B^2(a)+……+k(n-1)B^(n-1)(a)=0(1)用B^(n-1)作用等式两边,因为B^n(a)=0,故得k0B^(n-1)(a)=0.又因为B^(n-1)
V必存在一组正交基r=1V的基的线性组合有无穷多个,可组成无穷多彼此间线性无关的子空间的基,这是因为,n元齐线性方程组有无穷多个,且必有解.1
双射与单位变换是两回事双射是一一对应单位变换是恒等变换