设x,y为正实数,且2x 5y=20
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 07:06:55
∵xy=1,∴x4y4=1,∴y4=1x4,∴z=1x4+14y4,=1x4+14x4,=(1x2-12x2)2+2•1x2•12x2,=(1x2-12x2)2+1,∵当(1x2-12x2)2=0,上
根据题意得,x+1=0,2x-y+4=0,解得x=-1,y=2,∴x5y+xy5=(-1)5×2+(-1)×25=-2-32=-34.故答案为:-34.
x+4y=40≥2√4xy=4√xy10≥√xyxy≤100lgy+lgx=lgxy≤lg100=2最大值2
证明:(1+1/x)(1+1/y)>=9吧方法一:(分析法(找思路))(1+1/x)(1+1/y)>=9等价于(x+1)(y+1)>=9xy(通分,去分母)等价于xy0,y>0,所以xy
20=2x+5y≥2√(2x*5y)平方400≥40xyxy≤10所以2^(xy)≤2^10所以最大值是1024
题目有歧义,建议用标准记号sqrt{x}表示x的平方根.再问:1+x方和1+y方在根号里(sqrt{1+x^2}+x-1)(sqrt{1+y^2}+y-1)≤2再答:Answer:Max(xy)=1.
1/X+9/Y=1(Y+9X)/XY=1Y+9X=XY>=2√(9XY)=6√(XY)√XY>=6X+Y>=2√(XY)>=2*6=12所以最小值为12
2x+5y=2020=2x+5y>=2根号下10xyxy
log(2)x+log(2)y=log(2)xy=2xy=41/x+1/y>=2/xy=1/2
设x+2=s,y+1=t,则s+t=x+y+3=4,所以x2x+2+y2y+1=(s−2)2s+(t−1)2t=(s−4+4s)+(t−2+1t)=(s+t)+(4s+1t)−6=(4s+1t)−2.
方法1∵x+y=4.∴y=4-x.∴式子z=√(x²+1)+√(y²+4)可化为:Z=√[(x-0)²+(0+1)²]+√[(x-4)²+(0-2)&
化成齐次式((x^2+y^2+z^2)/xyz)^2>=(xx+yy+zz)^2/((x+y+z)xyz)xx+yy+zz>=1/3*(x+y+z)^2x+y+z>=3(xyz)^(1/3)xx+yy
(1)由函数性质“对任意得正实数x.y有f(xy)=f(x)+f(y)且f(1/2)=-1”可得:f(Sn)=f(an)+f(an+1)-1=f(an*an+1)+f(1/2)=f[(an*an+1)
x+y=(x+y)(1/x+9/y)=1+9x/y+y/x+9=9x/y+y/x+10≥2根号下(9x/y*y/x)+10=2*3+10=16当且仅当9x/y=y/x,即y=3x时,等号成立,此时1/
由32+x+32+y=1,化为3(2+y)+3(2+x)=(2+x)(2+y),整理为xy=x+y+8,∵x,y均为正实数,∴xy=x+y+8≥2xy+8,∴(xy)2−2xy−8≥0,解得xy≥4,
∵x、y均为正实数,且12+x+12+y=13,进一步化简得xy-x-y-8=0.x+y=xy-8≥2xy,令t=xy,t2-2t-8≥0,∴t≤-2(舍去),或t≥4,即xy≥4,化简可得 
设x,y均为正实数,且xy=x+y+8,则xy的最小值为?x>0,y>0,且xy=x+y+8xy=x+y+8≥2√xy+8xy-2√xy+8≥0(√xy+2)(√xy-4)≥0√xy≤-2====>x
由32+x+32+y=1,可化为xy=8+x+y,∵x,y均为正实数,∴xy=8+x+y≥8+2xy(当且仅当x=y等号成立)即xy-2xy-8≥0,可解得xy≥4,即xy≥16故xy的最小值为16.
3x*2y≤[(3X+2y)/2]²=36所以xy≤6{用a+b≥2根号(ab)的思想}
令x=y=2则xy=4所以f(4)=f(2)+f(2)令x=4,y=2则xy=8所以f(8)=f(4)+f(2)=f(2)+f(2)+f(2)=3f(2)=1令x=y=√2则xy=2所以f(2)=f(