设x-n(u,6²)求y=ax b的概率密度函数,并指出服从什么分布
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 06:47:18
Cov(U,V)=cov(2X+Y,2X-Y)=4cov(x,x)-cov(y,y)+cov(2x,-y)+cov(2x,y)=4D(x)-D(y)=8-2=6如有意见,欢迎讨论,共同学习;如有帮助,
y=ln(1+x)y′=1/(1+x)y′′=-1/(1+x)²y′′′=(-1)(-2)[1/(1+x)³].y^n=(-1)(-2)...(-n+1)[1/(1+x)^n]
y=x²+2y=3x联立得x²+2=3xx²-3x+2=0解得x=1或x=2代入得y=3或y=6所以二线交点有二个为(1,3)和(2,6)注意题目、、、再问:代表元不是y
设全集U={(x,y)|x,y属于R},集合M={(x,y)|(y+2)/(x-2)=1},则M={(x,y)|(y=x-4且x≠2}所以,M的补集为{(x,y)|(y≠x-4}∪{(2,-2)}集合
首先你要理解所给集合的元素代表什么.全集U为平面点集,M为两条射线(直线y=x+1除去点(2,3)),N表示平面内除去直线y=x+1以外的点.我想这样你应该能得出结果了吧?有问题继续问我.再问:能再说
Eu=E(aX+bY)=aEx+bEy=a*0+b*0=0同理Ev=0因为X,Y相互独立,所以Du=D(aX+bY)=(a^2)*Dx+(b^2)*Dy=(a^2)*^2+(b^2)*^2Dv=D(a
晕,x,y是独立的,但u,v里都有x,所以u,v就不独立了,而是相关的,于是就有相关系数.而相关系数的公式在计算的时候,就和Du,Dv有关系,而Du,Dv又和Dx,Dy有有关系,所以,……再问:不是,
E(X)=E(Y)=0,D(X)=D(Y)=4,E(X^2)=D(X)+[E(x)]^2=D(X)=4,E(Y^2)=4;E(U)=3E(X)+2E(Y)=0,E(V)=3E(X)-2E(Y)=0;D
UV=acXY+adX+bcY+bdE(UV)=acE(XY)+adEX+bcEY+bdEU=aEX+bEV=cEY+dEU*EV=acEXEY+adEX+bcEY+bd因此两式相减得E(UV)=EU
cuM={(x,y)│y-3/x-2≠1}={(x,y)│y≠x+1},cuN={(x,y)│y=x+1},CuM∩CuN=Ф
y=x²+2y=3x联立得x²+2=3xx²-3x+2=0解得x=1或x=2代入得y=3或y=6所以二线交点有二个为(1,3)和(2,6)即选择B
∂u/∂x=[∂u/∂(xy)][d(xy)/dx]+[∂u/∂(x/y)][d(x/y)/dx]=yf₁'+(1/
az/ax=az/au+au/ax=2ulnv-y/x^2az/ay=az/av+av/ay=u^2/v+2y然后再稍微化简一下就行啦!再问:怎么简化啊。。。。我完全不会啊。。。再答:这里的u跟v应该
回答:根据题意,Y∼N(μ,1),X=e^(Y),y=h(x)=lnx,h'(x)=1/x.于是,X的概率密度为ψ(x)=[1/√(2π)]{e^[-(1/2)(lnx-μ)^2]}(1/
(y+2)/(x-2)=1y+2=x-2且x-2≠0y=x-4且x≠2所以集合M表示直线y=x-4上除去(2,-2)外的其它所有点而集合N表示平面坐标系内除去直线y=x-4外的其它所有点CuM表示平面
dz/dx=dz/du*(du/dx)=2u*1=2udz/dy=dz/du*(du/dy)=2u*1=2u和v没关系
这个题目的思路是,求出 Y 的分布函数,然后发现分布函数为正太分布,于是得证. 详细解答如下:
N(u,σ²),即X的密度函数为fX(x)=1/(√2π*σ)*e^[-(x-u)²/(2σ²)]那么Y=2X+5~N(2u+5,4σ^2)所以Y的概率密度为fY(y)=