设x1 x2 x3 x4来自均值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 00:20:03
设x1 x2 x3 x4来自均值
设两个随机变量X,Y相互独立,且都服从均值为0、方差为12

令:Z=X-Y,则由于X,Y相互独立,且服从正态分布,因而Z也服从正态分布,且EZ=EX-EY=0-0=0,DZ=D(X-Y)=DX+DY=12+12=1,因此,Z=X-Y~N(0,1),∴E|X-Y

设X~ε(λ),X1,X2,……是来自总体X的随机变量,和总体X独立的随机变量N服从均值为1/P的几何分布,求Y=(X1

这题就是把N从常量整数变成变量,如果是常量整数,Y服从正态分布,变成变量整数其实也服从正态分布,但此时E(Y)跟D(Y)就变了.但是也很好求,只是比较麻烦.E(X)=λ,D(X)=ε平方,E(N)=1

用均值不等式做.设0<x<2,求y=√(X(8-3X))的最大值.用均值不等式做.

y=√[X(8-3X)]=√[3X(8-3X)]/√3≤√[(3X+8-3X)/2]²/√3=4/√3=4√3/3当且仅当3X=8-3X即X=4/3时,等号成立所以y=√(X(8-3X))的

设X1X2X3X4是取自总体X~N(0,o^2)DE的样本,则统计量y=(x1+x2)^2/(x3-x4)^2服从自由度

若X1,X2,X3,X4独立,(X1+X2)服从N(0,8),则(1/8)(X1+X2)^2服从卡方1;(X3-X4)服从N(0,8),则(1/8)(X3-X4)^2服从卡方1;当C=1/8时,CY服

大学概率与数理统计设X1,X2,.X9是来自正态总体N(μ,4)的简单随机样本,X拔是样本均值,一直P{|X拔-μ|

o=根号4=2n=9P{|X拔-μ|/(o/根号n)再问:额,我们还没讲过置信区间,μ=1.3067,答案再答:我后头不是给你写了步骤了3o换成o/3除写成乘了。。。μ/(o/3)=1.961.96*

概率设x1x2x3x4服从N(0,2^2)分布 Y=a(X1-X2)^2+b(X3-X4)^2当ab为何值时Y服从x^2

√a(X1-X2),√b(X3-X4)一定要服从N(0,1)D(√a(X1-X2))=a(D(X1)+D(X2))=8a=1D(√b(X3-X4))=b(D(X3)+D(X4))=8b=1a=1/8,

求做轧钢加热炉温度均值控制系统课设

轧钢加热炉温度均值控制系统课设,建议你去文库或其他类似网站找找相关资料参考着做.

设总体X服从正态分布X~N(μ,σ^2),X1,X2,...,Xn为来自该总体的一个样本,则样本均值是

样本均值?那不直接是(X1+.+Xn)/n不过应该不是问这个吧可以说详细点?再问:是等于N(μ,σ^2)吗再答:有完整的题目么?这个X~N(μ,σ^2)意思是总体X服从总体均值为μ,总体标准差为σ的正

设总体X服从区间(-1,1)上均匀分布,X1,X2,……Xn来自总体X的样本,求样本均值的数学期望和方差

设X1X2...Xn为来自总体X的样本,总体X服从参数为λ的指数分布,即f(x,λ)=λexp(-λx)求X(1)和X(n)_百度知道设X1X2...Xn为来自总体X的样本,总体X服从参数为λ的指数分

5.设由来自正态总体 的容量为16的简单随机样本,得样本均值 =100,求(1)总体均值μ的点估计;(2)总体均值μ的置

1.总体均值μ的点估计当然是1002.没有标准差怎么算第二小题?假设这个标准差是8,置信度0.95时,z=1.96,总体均值μ的置信区间=(100-1.96×8/100的平方根,100+1.96×8/

设x>0,求证:x^2+2/x≥3(用均值不等式证)

x^2+2/x=x^2+1/x+1/x>=3*(x^2*1/x*1/x)^(1/3)=3当且仅当x^2=1/x=1/x,即x=1时取等号证毕

设X1,X2,...Xn+1为来自正态总体X~N(u,)的容量为n的样本,,为样本X1,X2...,Xn的样本均值和样本

上面这个网址有关于这个结论的详细证明,如有不懂可追问.

设X1,X2.Xn(n>2)为来自总体N(0,a^2)的样本,记Yi=Xi-X的均值,

X1,X2.Xn来自总体为N(0,σ^2)=>∑xi~N(0,nσ^2)=>∑xi/√(nσ^2)~N(0,1)=>[∑xi/√(nσ^2)]^2~x^2(1)=>C=nσ^2

设总体X~N(12,4),x1,x2,x3……x16为样本,X头上一横为样本均值,计算P{丨样本均值-12丨>1}

4是方差?x1+..x16~N(12*16,4*16)均值-12=(x1+..x16-12*16)/16P(|均值-12|>1)=P(|x1+..x16-12*16|>16)即求16个样本和的分布同其

设X1 X2…… Xn是来自总体的一个样本 求样本均值 样本方差

均值=(X1+X2+.+Xn)/n方差=[(X1-均值)^2+(X2-均值)^2+.+(Xn-均值)^2]/n

设总体X服从区间(a,b)上的均匀分布,X1,X2,······Xn是来自总体X的一个样本,则样本均值的方差为

DX拔=DX/n=(b-a)^2/12n再问:为什么分母有一个n呢再答:DX拔=DX/n样本均值的期望=总体的期望样本均值的方差=n分之总体方差

均值

解题思路:均值解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/include/readq.php?