设X1 X2--Xn独立同分布 均值为μ 且设Y=1 n 求E(Y)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 20:10:55
设X1 X2--Xn独立同分布 均值为μ 且设Y=1 n 求E(Y)
概率论,已知随机变量X1,X2,X3,…Xn(n>1)相互独立且同分布

再问:哦哦,明白了,谢谢你啦!!再答:欢迎继续讨论,我这学期重修概率论再问:呵呵,我们明天考试再答:这....这么快再答:祝你成功啊再问:恩,半学期学完。再问:嗯嗯,谢谢

大学 概率论 X1,X2...Xn是独立同分布U(0,θ)随机变量.Yn 是X1,X2...Xn中的最大值者,即 Yn=

哎,都是最基本的题,写出来你参考一下,希望对你有所帮助吧:(很多式子,在下面的图片里)

设X1,X2,…,Xn,…为独立同分布的随机变量序列,若( )时,则{Xi}服从契比雪夫大数定律.

选A要满足切比雪夫大数定律,必须要求Xi的方差存在(一致有界)当然,D(Xi)存在蕴含了E(Xi)存在简单一点的方法就是排除对B选项,E(Xi)=∑{k=1,∞}k/[k*(k+1)]=∑{k=1,∞

设随机变量X1,X2,.Xn,...是独立同分布,其分布函数为F(X)=a+(1/π)*arctan(x/b),b≠0,

B绝对值号的意义:保证所求的概率不会出现负数的尴尬情况

概率中心极限定理,如果X1 X2 X3 .Xn是独立同分布的随机变量且具有相

这是三个变量,不是有固定值的数字三个全部服从相同的概率分布举个例子1~10随机抽取个数字X1你其实并不知道X1到底是多少X1服从分布就是以10%的概率取到1~10任何一个数X2如果说和X1的分布相同,

设随机变量序列X1,X2,...Xn独立同分布,且E(Xi)=μ,D(Xi)=σ^2,i=1,2,...,则对任意实数x

由林德贝格中心极限定理lim(n->∞)P{{(∑Xi-nμ)/[n^(1/2)*σ]}>x}=1-Φ(x).其中Φ(x)是标准正态分布的分布函数.

设连续型随机变量X1.,Xn相互独立,且分布相同,求P{Xn>max(X1,.Xn-1)}

P(Xn>max(X1,...,Xn-1)=P(Xn>X1)*P(Xn>X2)*.*P(Xn>Xn-1)设X的分布函数为F(x),密度为f(x)则P(Xn>X1)=积分(xn>x1){f(xn)f(x

设随机变量X1,X2,...Xn独立同分布,且E(Xi)=μ,D(Xi)=σ^2,i=1,2,...,设x=1/n∑xp

EX=E(1/n∑xp)=1/n∑E(xp)=μDX=D(1/n∑xp)=1/n²D(∑xp)=1/n²∑D(xp)=σ²/n相关系数就是协方差和2个变量方差的积平方根的

设随机变量X1,X2,…,Xn,…独立同分布,其分布函数为F(x)=a+(1/π)*arctan(x/b),b≠0,则辛

     辛钦大数定律对此序列不适用.原因是随机变量序列中每一个随机变量的数学期望都不存在.具体为什么,看下面的说明. 若取上面的a=0,不

随机变量X1 X2 ...Xn 独立同分布 同分布是不是说这些变量的方差 期望都相等?

独立同分布是说随机变量之间相互独立,而且分布函数相同.既然分布函数相同,因此只要期望,方差是有限值,就必然是一样的.

依概率收敛问题设随机变量序列{Xn,n≥1}独立同分布,都服从U(0,a),其中a>0.令X(n)=max(1≤i≤n)

第一步计算出X(n)的分布函数,从而分布密度.(有现成公式)第二步计算P(|X(N)-a|>e)=P(a-ea再问:X(n)的分布函数该怎么求再答:如果U(0,a)的分布函数是F(x),则Xn的分布函

设随机变量X1,X2,---,Xn独立同分布且具有相同的分布密度,证明:P{Xn>max(X1,X2,...,Xn-1)

设X1...Xn的概率密度函数是fX(x),概率分布函数是FX(x)设随机变量Y=max(X1,...,Xn-1)先求Y的概率分布函数FY(y):FY(y)=P{Y

设X1,X2...Xn 独立同分布的随机变量,证明X=(1/n)* ∑Xi 和∑(Xi-X)^2 相互独立.

记Y=∑(Xi-X)².X,Y一般不是相互独立的.例如n=3,X1,X2,X3都服从-1,1两点均匀分布.可以算得P(X=1)=(1/2)³=1/8.P(Y=0)=3·(1/2)&

设随机变量X1,X2,……Xn相互独立同分布,且都有密度函数f(x)=1/π(1+x^2),证X1,X2……Xn不满足中

Xi服从Cauchy分布,EXi不存在,所以X1,X2……Xn不满足中心极限定理条件再问:Cauchy分布,这个没学过再答:就是密度是科西分布,按期望的定义其期望不存在

设随机变量X1,X2...Xn相互独立同分布,服从B(1,p),则E(Xk∑Xi)=?其中Xk为X1,X2...Xn中的

注意到相同下标的X不独立,不相同下标的X相互独立,则该题就解决了

设随机变量X1,X2,…Xn(n>1)独立同分布,方差λ^2>0,令Y=(1/n)∑(i=1~n)Xi,则( )

cov(X1,Y)=1/n·∑(i=1~n)cov(X1,Xi)=1/n·cov(X1,X1)=(λ^2)/n所以,选A再问:cov(X1,X2),cov(X1,X3),cov(X1,X4)…cov(

设X1,X2...为独立同分布随机变量序列,Xn的分布列为P(Xn=0)=P(Xn=2)=0.5,n>=1 .随机变量X

E(Xn)=0×0.5+2×0.5=1E(X)=∑(1~n)E(Xi)/(3^i)=∑(1~n)1/(3^i)∑(1~n)1/(3^i)是一个等比数列,公比1/3,用等比求和公式得E(X)=1/2D(

设X1,X2...Xn是独立同分布的正值随机变量.证明E[(X1+...+Xk)/(X1+...Xn)]=k/n,k≤n

因为(Xi/(X1+X2+……+Xn))的绝对值小于等于1,所以它的期望存在.由对称性,E[(X1)/(X1+...Xn)]=E[(X2)/(X1+...Xn)]=...E[(Xi)/(X1+...X