设X1,X2,``````,Xn是来自总体X的样本,且X的密度函数为F(x)=
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 14:43:52
x1,x2是一元二次方程x2+3x-3=0的两个实数根∴x1+x2=-3x1x2=-3∴x1/x2+x2/x1=(x1²+x2²)/x1x2=[(x1+x2)²-2x1x
根据根与系数关系x1+x2=6x1*x2=-7
ax²+bx+c=0中有:x1+x2=-b/ax1·x2=c/a2X²-9X+6=0中:a=2b=-9c=6x1+x2=-b/a=9/2x1·x2=c/a=3(x1-x2)&sup
1(μ1f(x1)+μ2f(x2))/(μ1+μ2)在f(x1)和f(x2)之间,由介值性定理,在[x1,x2]内至少存在一点ζ,使(μ1f(x1)+μ2f(x2))/(μ1+μ2)=f(ζ)2.用和
1.求F(0)的值F(x1)+F(x2)=2F((x1+x2)/2)F((x1-x2)/2),x1=x2=x2F(x)=2F(x)F(0)F(0)=1F(x)+F(-x)=2F((x-x)/2)F((
不等式恒成立的意思就是函数在定义域上单调递增函数x>a的时候单调递增所以a
1假设X1+X2=M为最大值,则X2+X3,X3+X4和X4+X5均小于或等于M所以x1+x2+x3+x4+x5
根据韦达定理有X1+X2=-b/a=-2/3,X1*X2=c/a=-3/3=-1①x2/x1+x1/x2=(x2²+x1²)/(x1x2)=【(x1+x2)²-2x1x2
(2x-1)(x-3)=0x1=1/2x2=3
解题思路:利用一元二次方程根与系数的关系求解。解题过程:最终答案:略
/>1.∵f(X1)+f(X2)=2f{(X1+X2)/2}f{(X1-X2)/2},令X2=X1,得2f(X1)=2f(X1)f(0),即有f(X1)[1-f(0)]=0又∵对任意实数x1上式都成立
(1)二次型的矩阵A=1t1t20101由A奇异知|A|=0.而|A|=-t^2所以t=0(2)此时A=101020101|A-λE|=-λ(λ-2)^2.所以A的特征值为λ1=0,λ2=λ3=2.对
x1.x2是方程2x²-x-3=0的两实根∴x1+x2=1/2x1x2=-3/2∴x1+x2+x1*x2=1/2-3/2=-1
由题意得p(x,√(4ax))所以轨迹为y=√(4ax)即y=2√ax
分析:设P(x1,y1),欲求出动点P的轨迹方程,只须求出x,y的关系式即可,结合新定义运算,即可求得动点P(x^2,4ax)的轨迹方程,从而得出其轨迹.∵x1*x2=(x1+x2)^2-(x1-x2
根据方差的意义知,方差为0,则没有波动,故有:x1=x2=…=xn.故填x1=x2=…=xn.
算出行列式的值,再整理成只和x1+x2+x3,x1x2+x2x3+x3x1,x1x2x3这三项有关的形式,利用三次方程韦达定理带入系数可求.
根据韦达定理:x1+x2=-2(1)x1x2=-1(2)(1)^2-4(2)=(x1-x2)^24+4=(x1-x2)^2x1-x2=±2√2再问:当x1<x2的时候,那x1-x2是不是就只等于-2√
x1^2=3-x1,x2^2=3-x2,x1^3-4x2^2+19=3x1-x1^2-4x2^2+19=3x1-x1^2+4x2+7,x1+x2=-1,原式=4+x2-x1^2=4+x2-3+x1=0
答案1由方程得x1+x2=2008,x1*x2=-1则(x2)^2+2008\x1=(x2*x2*x1+2008)/x1=(-x2+x1+x2)/x1=1