设X1,X2,···,Xn是来自正态总体N(μ,σ)的简单随机样本,x为样本均值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 14:26:46
设X1,X2,···,Xn是来自正态总体N(μ,σ)的简单随机样本,x为样本均值
若x1,x2···xn的方差为S²,则S²=(x1²+x2²+···xn

根据定义知:x1+x2+...+xn=n*x拔S^2=[(x1-x拔)^2+(x2-x拔)^2...+(xn-x拔)^2]÷n=[x1²+x2²+···xn²+n*x拔^

设x1.x2,.xn是正数,求证(x1+x2+……+xn)(1/x1 +1/x2 +……+1/xn )≥n^2关于柯西不

同学..这个已经接近柯西不等式的一般形式了一般形式为(a1^2+a2^2+.an^2)(b1^2+b2^2+...b^2)>=(a1b1+a2b2+.anbn)^2令ai=√xi,bi=1/√xi就得

设x1,x2,……,xn是正数,求证(x1+x2+……+xn)(1/x1 +1/x2 +……+1/xn )≥n^2用柯西

题1本身就是柯西不等式,一步即得题2,3皆可用均值不等式调和平均数≤算术平均数3中化Xi^2\(1+Xi)为Xi-1+1\(1+Xi)

X1·X2·X3·…·Xn=1,且X1,X2,…,Xn都是正数,求证(1+X1)(1+X2)…(1+Xn)>=2的n次

数学归纳法:1.n=1时,x1∈(0,+∞),且x1=1,则1+x1=2≥2^1=2,成立;2.假设n=k(k∈N)时不等式成立,即x1,x2,x3,…,xk∈(0,+∞),(即数列中的元素为正),且

设一组数据x1,x2···xn的平均数x拔,方差为S平方.求:ax1,ax2···,axn的方差

x1,x2···xn的平均数x拔那么ax1,ax2···,axn的平均数就为ax拔那么方差就为s^2=1/n[(a-ax1)^2+……(a-axn)^2]把a^2提出后边就是s^2那么方差就是as

设x1,x2,...,xn为任意实数,求证:x1/(1+x1^2)+x2/(1+x1^2+x2^2)+...+xn/(1

和高手讨论了一下,这办法不是我想的.(x1/(1+x1^2)+x2/(1+x1^2+x2^2)+...+xn/(1+x1^2+x2^2+...+xn^2))^2

设S的平方是X1,X2,.Xn的方差,S的平方是X1+5,X2+5,.,Xn+5的方差.则下列结论正确的是

设第一组数据X1,X2,.Xn的平均数为x则第二组数据X1+5,X2+5,.,Xn+5的平均数为x+5根据方差公式,两组数据中,每个数据与平均数的差对应不变.故选A

设总体X~U(0,θ),X1,X2,···,Xn是取自该总体的一个样本.X0是样本平均数.

对任意i,显然都有E(Xi)=θ/2,故E(θ1)=2E(X0)=2/n∑E(Xi)=2*θ/2=θ令t=X(n)为次序统计量,根据次序统计量的密度公式,其密度为g(t)=nF(t)^(n-1)p(t

设x1,x2,x3.xn都是正数,求证:x1^2/x2+x2^2/x2+.+xn-1^2/xn+xn^2/x1>=x1+

最直接的就是用Cauchy不等式得:(x2+x3+...+xn+x1)(x1^2/x2+x2^2/x3+...+x(n-1)^2/xn+xn^2/x1)≥(x1+x2+...+x(n-1)+xn)^2

设X1、X2、X3……Xn是整数,

设其中有a个2,b个1,c个零,d个-1,可知a+b+c+d=n且a,b,c,d均为大于等于零的整数,并满足2a+b-d=194a+b+d=99令S=X1的立方+X2的立方+……Xn的立方则有S=8a

设x1,x2,...,xn为实数,证明:|x1+x2+...+xn|

x1,x2,...,xn为实数|x1+x2+...+xn|=|x1+(x2+.+xn)|

已知两组数据X1,X2···Xn和Y1,Y2···Yn的平均数分别是P,Q.求一组新数5X1,5X2···5Xn;和另一

X1,X2···Xn的平均数分别是P,一组新数5X1,5X2···5Xn的平均数是5P;Y1,Y2···Yn的平均数Q,X1+Y1,X2+Y2,···Xn+Yn的平均数是P+Q

如何证明“|x+x1+x2+···+xn|≥|x|-(|x1|+|x2|+···+|xn|)”?

由三角不等式可以得到|x+x1+x2+···+xn|≥|x|-|x1+x2+···+xn|因为|x1+x2+···+xn|

设排列x1,x2…Xn是奇排列,那么Xn,Xn-1,…X1的奇偶性如何?求详解,

分析:所谓排列的奇偶性,是指排列的逆序数为奇数还是为偶数.应用于线性代数的行列式.至于什么是“逆序数”,可以解释为调换原来次序的次数.例如“1,2,3,4,5”的逆序数为0(偶数),而“1,3,2,4

设总体X服从区间(a,b)上的均匀分布,X1,X2,······Xn是来自总体X的一个样本,则样本均值的方差为

DX拔=DX/n=(b-a)^2/12n再问:为什么分母有一个n呢再答:DX拔=DX/n样本均值的期望=总体的期望样本均值的方差=n分之总体方差

1,已知X1·X2·X3…·Xn=1,且X1,X2,…Xn都是正数,求证:

1.∵X1,X2,…Xn都是正数,根据重要不等式1+x1≥√x11+x2≥√x2……1+xn≥√xn∴n个不等式左右相乘有(1+X1)(1+X2)…(1+Xn)≥2^n√x1√x2√xn=2^n√x1