设X1,X2,是取自(0-1)分布b(1,p)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 14:37:43
首先应该是e(入)fxi(xi)=入e^(-入xi)i∈{1,2,...n}把所有乘一起,设联合密度=pp(x1,x2,x3.,xn)=入^ne^(-入nx)注意下面这个E(X)是期望值E(X)=1/
EX(X上面一横杠)=E[(X1+X2+……+Xn)/n]=1/n[E(X1)+E(X2)+……+E(Xn)]=1/n(U+U+……+U)=U1516
若X1,X2,X3,X4独立,(X1+X2)服从N(0,8),则(1/8)(X1+X2)^2服从卡方1;(X3-X4)服从N(0,8),则(1/8)(X3-X4)^2服从卡方1;当C=1/8时,CY服
选B,因为他的期望不是是uE(A)=uE(X1+X2+X3)=E(X1)+E(X2)+E(X3)=3uE(0.2X1+0.3X2+0.5X3)=0.2E(X1)+0.3E(X2)+0.5E(X3)=u
(1)x1+x2=k+2x1x2=2k+1(x1+x2)²=x1²+x2²+2x1x2=11+2x1x2(k+2)²=11+2(2k+1)k²+4k+
∵⊿=2²-4×1×﹙-1﹚=8>0∴方程有两不等的实根∵x1<x2∴x1-x2=-√﹙x1-x2﹚²=-√[﹙x1+x2﹚²-4x1x2]=√[﹙-2﹚²-4
行列式展开=x1^3+x2^3+x3^3-3x1x2x3而x1^3+x2^3+x3^3-3x1x2x3=(x1+x2+x3)(x1^2+x2^2+x3^2-x1x2-x2x3-x3x1)(展开右边即得
(X1,…,Xn)是个随机向量,B(n,p)是一个随机变量的分布,二者维数不同.应该是X=X1+…+Xn~B(n,p)就对了,前提是诸Xi彼此独立.可以直接求X的分布列验证.
解题思路:利用一元二次方程根与系数的关系求解。解题过程:最终答案:略
对任意i,显然都有E(Xi)=θ/2,故E(θ1)=2E(X0)=2/n∑E(Xi)=2*θ/2=θ令t=X(n)为次序统计量,根据次序统计量的密度公式,其密度为g(t)=nF(t)^(n-1)p(t
a=5,b=-7,c=-3所以x1+x2=7/5x1x2=-3/5所以x1²+x2²=(x1+x2)²-2x1x2=49/25+6/5=79/251/x1+1/x2=(x
x1.x2是方程2x²-x-3=0的两实根∴x1+x2=1/2x1x2=-3/2∴x1+x2+x1*x2=1/2-3/2=-1
X^2分布X是希腊字母,不是X
服从X^2(n-1)分布,那个X不是未知数X,长得像而已,手机打不出来,抱歉.因为(x-u)^2求和,等于n-1倍的样本方差平方,然后就是定理了,手机不好打阿~
∵x1,x2是实系数方程x²+mx+1=0的两实根∴x1+x2=﹣m,x1·x2=1Δ>0,即m²-4>0∴m<﹣2或m>2∵x1
根据韦达定理:x1+x2=-2(1)x1x2=-1(2)(1)^2-4(2)=(x1-x2)^24+4=(x1-x2)^2x1-x2=±2√2再问:当x1<x2的时候,那x1-x2是不是就只等于-2√
答案1由方程得x1+x2=2008,x1*x2=-1则(x2)^2+2008\x1=(x2*x2*x1+2008)/x1=(-x2+x1+x2)/x1=1
(X1,…,Xn)是个随机向量,B(n,p)是一个随机变量的分布,二者维数不同.应该是X=X1…Xn~B(n,p)就对了,前提是诸Xi彼此独立.可以直接求X的