设x1,x2--xn为来自总体分布的泊松分布样本均值样本方差

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 21:57:47
设x1,x2--xn为来自总体分布的泊松分布样本均值样本方差
概率论与数理统计:设总体X~N(0,0.25),x1,x2,x3...xn为来自总体的一个样本,见下图;请给出计算过程,

a=4..再问:��Ĺ����>再答:��������ֲ�Ҫ�����DZ�׼��̬�ֲ�Xi/0.5~N(0,1)Xi^2/0.25=a*Xi^2a=4

设X1,X2,…Xn是来自二项分布总体B(n,p)的简单随机样本,.X

因为.X与S2分别为总体均值与方差的无偏估计,且二项分布的期望为np,方差为np(1-p),故E(.X)=np,E(S2)=np(1-p).从而,由期望的性质可得,E(T)=E(.X)-E(S2)=n

设X1,X2.Xn是来自均匀分布总体U(0,c)的样本,求样本的联合概率密度

均匀分布的总体U的概率密度为f(u)=1/c.总体U的独立样本X1,X2,...,Xn的联合概率密度为:f*(x1,x2,...,xn)=Πf(xi)=1/(c的n次方)再问:求具体步骤再答:这已经是

设X1,X2,...Xn是来自正态总体N(μ,σ^2)的简单随机样本

f(x1)=1/(2piσ^2)^0.5*exp[-(x1-μ)^2/2σ^2]...f(xn)=1/(2piσ^2)^0.5*exp[-(xn-μ)^2/2σ^2]L=f(x1)*f(x2)...f

设X1,X2,...Xn为来自正态总体X~N(μ,σ^2)的一个样本,μ已知,求σ^2的极大似然估计.

f(x1)=1/(2piσ^2)^0.5*exp[-(x1-μ)^2/2σ^2]...f(xn)=1/(2piσ^2)^0.5*exp[-(xn-μ)^2/2σ^2]L=f(x1)*f(x2)...f

设X1,X2,...Xn是来自正态总体X~N(μ,σ^2)的简单随机样本

因为是简单随机样本,所以各样本间相互独立,那么就有:E(X1+X2+……+Xn)=E(X1)+E(X2)+……+E(Xn)=μ+μ+……+μ=nμD(X1+X2+……+Xn)=D(X1)+D(X2)+

设X1.X2.Xn是来自正态总体N(3,4)的样本,则1/4倍的Xi-3的平方求和服从的分布为?

由Xi~N(3,4)得Xi-3~N(0,4)得(Xi-3)/4~N(0,4/(4^2))所以(Xi-3)/4~N(0,1/4)

设总体X服从参数为2的指数分布,X1,X2,…,Xn为来自总体X的简单随机样本,则当n→∞时,Y

大数定律:一组相互独立且具有有限期望与方差的随机变量X1,X2,…,Xn,当方差一致有界时,其算术平均值依概率收敛于其数学期望的算术平均值.这里X21,X22,…,X2n满足大数定律的条件,且EX2i

设总体X服从正态分布X~N(μ,σ^2),X1,X2,...,Xn为来自该总体的一个样本,

U=n^(1/2)*(xˉ-μ)/σ服从标准正态分布,即UN(0,1),因此,D(U)=1.

设总体X服从正态分布X~N(μ,σ^2),X1,X2,...,Xn为来自该总体的一个样本,则样本均值是

样本均值?那不直接是(X1+.+Xn)/n不过应该不是问这个吧可以说详细点?再问:是等于N(μ,σ^2)吗再答:有完整的题目么?这个X~N(μ,σ^2)意思是总体X服从总体均值为μ,总体标准差为σ的正

设X1,X2……Xn为来自总体(10)的简单随机样本,则统计量服从的分布为(

样本均值的期望等于总体期望,此题中为np样本方差的期望等于总体方差,此题为np(1-p)所以t的期望等于np-np(1-p)np(1-p)

设x1,x2,...,xn为实数,证明:|x1+x2+...+xn|

x1,x2,...,xn为实数|x1+x2+...+xn|=|x1+(x2+.+xn)|

设总体X~P(λ),则来自总体X的样本X1,X2.Xn的样本概率分布为

样本与总体同分步,也是P(λ),这是数理统计的规定.希望可以帮到你,如果解决了问题,请点下面的"选为满意回答"按钮,

设X1,X2,...Xn+1为来自正态总体X~N(u,)的容量为n的样本,,为样本X1,X2...,Xn的样本均值和样本

上面这个网址有关于这个结论的详细证明,如有不懂可追问.

设X1,X2.Xn(n>2)为来自总体N(0,a^2)的样本,记Yi=Xi-X的均值,

X1,X2.Xn来自总体为N(0,σ^2)=>∑xi~N(0,nσ^2)=>∑xi/√(nσ^2)~N(0,1)=>[∑xi/√(nσ^2)]^2~x^2(1)=>C=nσ^2

设 X1,X2,X3.Xn为来自总体 X的样本,已知总体的分布密度函数为:[f(

亲爱的同学,你的题目抄写错误或图片拍摄不清晰,老师无法清楚理解题意,请重新核实你的问题再提问,谢谢!

设X1,X2,.Xn是来自概率密度为 的总体样本,θ未知,求θ的矩估计和极大

矩估计E(x)=∫(-∞,+∞)f(x)xdx=θ/(1+θ)X'=Σxi/n=E(x)=θ/(1+θ)θ=x'/(1-x'),其中Σxi/n最大似然估计f(xi.θ)=θ^nx1^(θ-1)x2^(