设X1X2-Xn 1是来自正态总体
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 17:12:56
答:x1和x2是方程x^2-x-2013=0的根根据韦达定理有:x1+x2=1x1*x2=-2013x1^3+2014x2-2013=(x1+2013)x1+2014x2-2013=x1^2+2013
U(-1,1) -->f(x) = 1/2 for -1 < x < 1;&nb
x1+x2=M-1.x1x2=N-2;X1小于0,X2-3X1小于0,所以x2
将x=1代入方程:f(1)=a+b+c=-a/2c=-3/2a-b|X1-X2|=根号((x1+x2)^2-4x1x2)=根号(b^2/a^2-4c/a)=1/a*根号(b^2-4ac)=1/a*根号
x1+x2=2x1x2=m-1x1²+x1x2=x1(x1+x2)=2x1=1x1=1/2x2=3/2x1x2=m-1=3/4m=7/4
x1x2是方程x^2-13x+m=0的两根,所以deta=13*13-4*1*m>=0,==>m
要自己多动脑哦,虽然现在网络很方便,但是不要过分依赖网络哦,我相信你只要稍微动下脑筋就可以做出来的.再问:谢谢,我懂了
∵x1,x2是一元二次方程x2-3x-1=0的两个实数根,∴x1+x2=-−31=3,x1•x2=−11=-1,则x12+x22+4x1x2=(x1+x2)2+2x1x2=32+2×(-1)=7.故答
x1=[-b+√(b^2-4ac)]/2a,x2=[-b-√(b^2-4ac)]/2a,x1+x2=(-b-b)/2a=-b/ax1x2=[(-b)^2-(√(b^2-4ac))^2]/4a^2=[b
x1=(-b+根号b^2-4ac)/2ax2=(-b-根号b^2-4ac)/2ax1+x2=(-b-b)/2a=-b/a
x²-3x-2=0x₁+x₂=-b/a=3;x₁x₂=c/a=-2;∴x₁+x₁x₂+x₂=3
因为x1,x2是x^2-x-4=0的根,所以x1^2-x1-4=0,x2^2-x2-4=0x1^2=x1+4,x1^3=x1^2+4x,x1^3+5x2^2+10=(x1^2+4x1)+5x2^2+1
由韦达定理得,x1+x2=-p,x1x2=q代入(x1+1/x1)+(x2+1/x2)=0,即(x1+x2)+(x1+x2)/(x1x2)=-p-p/q=0得p=0或q=-1(1)当p=0时,有x1+
x1+x2=--A,x1*x2=A--2,(x1--2x2)(x2--2x1)=x1*x2--2x2^2--2x1^2+4x1*x2=--2(x1+x2)^2+9x1*x2=--2A^2+9A--18
根据韦达定理x1+x2=-px1*x2=q而x1^2+3x1x2+x2^2=(x1+x2)^2+x1x2=1也就是p^2+q=1(x1+1/x1)+(x2+1/x2)=(x1+x2)+(1/x1+1/
再问:但为什么可以分解成x1×x2+x1+x2+1?再答:…只是把原式展开而已,我没有跳步骤,你没学过?