设X1X2.......Xn是来自概率密度为f(x:θ)=θx
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 23:40:28
X(n+1)=2xn/(xn+2)两边转化为倒数得到1/X(n+1)=(xn+2)/2xn1/X(n+1)=1/2+1/xn1/X(n+1)-1/xn=1/2公差为1/2的等差数列
U(-1,1) -->f(x) = 1/2 for -1 < x < 1;&nb
x1+x2=M-1.x1x2=N-2;X1小于0,X2-3X1小于0,所以x2
证明:∵x(0)>0且x(n+1)=[x(n)+a/x(n)]/2∴x(n)>0∴由均值不等式知[x(n)+a/x(n)]/2≥√a即x(n+1)≥√a∴数列{x(n)}有下界.(1)又x(n+1)/
收敛好证,极限难求啊!点击图片有收敛证明
同学..这个已经接近柯西不等式的一般形式了一般形式为(a1^2+a2^2+.an^2)(b1^2+b2^2+...b^2)>=(a1b1+a2b2+.anbn)^2令ai=√xi,bi=1/√xi就得
题1本身就是柯西不等式,一步即得题2,3皆可用均值不等式调和平均数≤算术平均数3中化Xi^2\(1+Xi)为Xi-1+1\(1+Xi)
你上几年级啊!哥也无奈吗不是?
无法判断.xn=1/2^m,yn=2^nxn*yn=2^(n-m)n>=m,发散n
不能确定.举个实例,令Xn=常数-1,Zn=常数1,若Yn=sin(n),则Yn的极限就不存在.因为它不能确定于一个定值.
B(10,p),则E(X)=10p,D(X)=10p(1-p)E(X拔)=E(1/n*(X1+X2+^+Xn))=1/n*[E(X1)+E(X2)+^+E(Xn)]=1/10*10*E(X)=10pD
设第一组数据X1,X2,.Xn的平均数为x则第二组数据X1+5,X2+5,.,Xn+5的平均数为x+5根据方差公式,两组数据中,每个数据与平均数的差对应不变.故选A
设其中有a个2,b个1,c个零,d个-1,可知a+b+c+d=n且a,b,c,d均为大于等于零的整数,并满足2a+b-d=194a+b+d=99令S=X1的立方+X2的立方+……Xn的立方则有S=8a
x1,x2,...,xn为实数|x1+x2+...+xn|=|x1+(x2+.+xn)|
当n>=2时,0
∵xn≤a≤yn∴0≤|xn-a|≤|xn-yn|0≤|yn-a|≤|xn-yn|∴由夹逼定理:lim(n->∞)xn-a=0即:lim(n->∞)xn=alim(n->∞)yn-a=0即:lim(n
a^2*S^2
根据韦达定理x1+x2=-px1*x2=q而x1^2+3x1x2+x2^2=(x1+x2)^2+x1x2=1也就是p^2+q=1(x1+1/x1)+(x2+1/x2)=(x1+x2)+(1/x1+1/
取对数,原不等式等价于x1lnx1+x2lnx2+...+xnlnxn≥(x1+x2+..+xn)(lnx1+lnx2+...+lnxn)/n即n(x1lnx1+x2lnx2+...+xnlnxn)≥
分析:所谓排列的奇偶性,是指排列的逆序数为奇数还是为偶数.应用于线性代数的行列式.至于什么是“逆序数”,可以解释为调换原来次序的次数.例如“1,2,3,4,5”的逆序数为0(偶数),而“1,3,2,4