设X1X2X3X4X5是独立且服从相同

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 09:55:03
设X1X2X3X4X5是独立且服从相同
概率论正态分布设随机变量X、Y相互独立,且都服从正态分布N(1,2),则下列随机变量中服从标准正态分布的是A.(X-Y)

A-YN(-1,2)X-YN(0,2+2)=N(0,4)(X-Y)/2N(0,4/2^2)=N(0,1)选A再问:虽然看懂了...不过可以这么做的依据是什么啊?就是说,为什么可以对XY做运算?再答:这

概率论与数理统计的题:设X,Y是相互独立且(0,a)上服从均匀分布的随机变量,则E【min(x,y)】=?

这个只是一种简便写法.其实可以看到,如果x>y,那么(1/2)(x+y-|x-y|)=(1/2)[x+y-(x-y)]=y如果x

概率论,设A,B,C为三个随机事件,且A,B相互独立,则以下结论中不正确的是 D A.若P(C

B.若P(C)=1,则A∪C与B也独立错误明显P(A∪C)=1,当然A∪C不可能与B独立.A.正确,AC=A,BC=B,因为A,B独立,所以AC,与BC也独立C.正确,A∪C=A,所以A∪C与B也独立

设事件A,B 独立且互不相容,则min{P(A),P(B)}=()?写出解题步骤啊?知道答案但不知道为什么,答案是0

设事件A,B独立且互不相容,则min{P(A),P(B)}=()?写出解题步骤啊?知道答案但不知道为什么,答案是0,正确啊!

设A1,A2,A3是三个相互独立的随机事件,且P(A1)=P(A2)=P(A3)=P(0

3(1-p)p^2.再问:能否解答一下为什么,计算过程是怎样的再答:一个不发生事件的概率为1-p,两个发生事件的概率为p*p,这样的情况有3种,分别是A1不发生、A2不发生、A3不发生。

设A,B是两个相互独立的随机事件,且P(A)=1/4,P(B)=1/3,则P(B-A)=

B-A就是B发生,A不发生.P(B-A)=P(B)*[1-P(A)]=1/4

:设X 和Y 是相互独立的且均服从正态分布N( 0 ,0.5)的随机变量,求(X - Y)绝对值的数学期望

E(X-Y)=∑∞P(X1)(Y1)(X1-Y1)=∫∞∫∞f(x)f(y)(x-y)dxdy=0希望能帮到您~

设A,B是两个事件,且P(A)0.5,P(B)0.8,若AB相互独立,试求P(AUB)

(1)若AB相互独立,则P(AB)=P(A)P(B)=0.4P(AUB)=P(A)+P(B)-P(AB)=0.5+0.8-0.4=0.9(2)当A包含于B时,P(AB)=P(A)=0.5最大.

设x和y是相互独立的两个随机变量,且x服从(-1,2)上的均匀分布,y服从y~N(1,4)则D(XY)=

解题思路了讲到这后面的积分自己先积一积不懂追问再问:谢谢,明白了,但是木有更简单一点的么~~~~~再答:放心~是没有捷径滴而且这样做计算量不算很大,耐心一点就行了

设X与Y相互独立且服从N(0,0.5),证明X-Y是N(0,1)随机变量

因为X,Y独立的正太分布,所以他们的线性组合仍是正态分布D(X-Y)=DX+DY=1E(X-Y)=EX-EY=0所以有如题结果

顺便帮忙证明下:设X和Y是相互独立的随机变量,且X~π(λ1),π(λ2),证明Z=X+Y~

是X~π(λ)泊松分布证明:P{X=k}=λ^k*e^(-λ)/k!π(μ)P{Y=k}=μ^k*e^(-μ)/k!Z=X+YP{Z=k}=∑(i=0,...k)P{X=i}*P{Y=k-i}=∑(i

1:设X 和Y 是相互独立的且均服从正态分布N( 0 ,0.5)的随机变量,求(X - Y)绝对值的数学期望 有步

由于格式问题,积分无法在这里显示,需要详细解答请去我的百度空间——>相册——>答案中去看.

x1x2x3x4x5都是正整数,且x1+x2+x3+x4+x4=x1x2x3x4x5,求x5的最大值?

由于a,b,c,d,e在式中对称,故不妨设a〈=b〈=c〈=d〈=e.并令S=a+b+c+d+e=abcde.则S=a+b+c+d+e〈=5e,即abcde〈=5e,即t=abcd〈=5那么t为1或2

设随机事件A,B相互独立,且P(A)=0.5,A发生B不发生的概率是0.3求B发生的概率

P(A)=0.5,A发生B不发生的概率是0.3就是P(A)*[1-P(B)]=0.5*[1-P(B)]=0.3  1-P(B)=0.6P(B)=0.4  &nb

设X1,X2……Xn是相互独立的随机变量序列且他们服从参数λ的泊松分布,则由中心极限定理知

用定义做就行lim(n->∞)P{[∑(1,n)Xi-n*E(Xi)]/[√n*√D(Xi)]≤x}=Φ(x)因为Xi~P(λ),所以E(Xi)=D(Xi)=λ,代到上式lim(n->∞)P{[∑(1