设x1x2x3x4是独立且服从相同分布的随机变量

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 00:50:15
设x1x2x3x4是独立且服从相同分布的随机变量
概率论正态分布设随机变量X、Y相互独立,且都服从正态分布N(1,2),则下列随机变量中服从标准正态分布的是A.(X-Y)

A-YN(-1,2)X-YN(0,2+2)=N(0,4)(X-Y)/2N(0,4/2^2)=N(0,1)选A再问:虽然看懂了...不过可以这么做的依据是什么啊?就是说,为什么可以对XY做运算?再答:这

概率论与数理统计的题:设X,Y是相互独立且(0,a)上服从均匀分布的随机变量,则E【min(x,y)】=?

这个只是一种简便写法.其实可以看到,如果x>y,那么(1/2)(x+y-|x-y|)=(1/2)[x+y-(x-y)]=y如果x

设两个随机变量X,Y相互独立,且都服从均值为0、方差为12

令:Z=X-Y,则由于X,Y相互独立,且服从正态分布,因而Z也服从正态分布,且EZ=EX-EY=0-0=0,DZ=D(X-Y)=DX+DY=12+12=1,因此,Z=X-Y~N(0,1),∴E|X-Y

设X,Y相互独立,且都服从标准正态分布,则Z=X/根号下Y^2服从( ) 分布,并写出分布的参数

Z的分布叫做瑞利(Rayleigh)分布,具体求法:f(x,y)=[1/(2πσ^2)]*e^-[(x^2+y^2)/2σ^2]当z=0时,有:F(z)=∫∫f(x,y)dxdy,其中积分区域为x^2

设ξ1,ξ2,……,ξn是相互独立的随机变量,且都服从正态分布N(u,δ^2),则ξ=(1/n)∑ξi服从的分布是___

N(u,δ^2/n),这是正态分布的一个性质,满足正态分布的随机变量之和也是满足随机变量的,具体证明书上有,用的是特征函数.所以知道是正态分布后,期望方差很好求,一下子就确定了

:设X 和Y 是相互独立的且均服从正态分布N( 0 ,0.5)的随机变量,求(X - Y)绝对值的数学期望

E(X-Y)=∑∞P(X1)(Y1)(X1-Y1)=∫∞∫∞f(x)f(y)(x-y)dxdy=0希望能帮到您~

设随机变量X与Y相互独立,且服从同一分布,X的分布律为

由于:P(X=0,Y=0)=P(X=1,Y=0)=P(X=0,Y=1)=P(X=1,Y=1)=1/4.P(Z=1)=P(X=1,Y=0)+P(X=0,Y=1)+P(X=1,Y=1)=3/4.P(Z=0

设x和y是相互独立的两个随机变量,且x服从(-1,2)上的均匀分布,y服从y~N(1,4)则D(XY)=

解题思路了讲到这后面的积分自己先积一积不懂追问再问:谢谢,明白了,但是木有更简单一点的么~~~~~再答:放心~是没有捷径滴而且这样做计算量不算很大,耐心一点就行了

设X与Y相互独立且服从N(0,0.5),证明X-Y是N(0,1)随机变量

因为X,Y独立的正太分布,所以他们的线性组合仍是正态分布D(X-Y)=DX+DY=1E(X-Y)=EX-EY=0所以有如题结果

设X1X2X3X4是取自总体X~N(0,o^2)DE的样本,则统计量y=(x1+x2)^2/(x3-x4)^2服从自由度

若X1,X2,X3,X4独立,(X1+X2)服从N(0,8),则(1/8)(X1+X2)^2服从卡方1;(X3-X4)服从N(0,8),则(1/8)(X3-X4)^2服从卡方1;当C=1/8时,CY服

概率设x1x2x3x4服从N(0,2^2)分布 Y=a(X1-X2)^2+b(X3-X4)^2当ab为何值时Y服从x^2

√a(X1-X2),√b(X3-X4)一定要服从N(0,1)D(√a(X1-X2))=a(D(X1)+D(X2))=8a=1D(√b(X3-X4))=b(D(X3)+D(X4))=8b=1a=1/8,

1:设X 和Y 是相互独立的且均服从正态分布N( 0 ,0.5)的随机变量,求(X - Y)绝对值的数学期望 有步

由于格式问题,积分无法在这里显示,需要详细解答请去我的百度空间——>相册——>答案中去看.

设X与Y是相互独立随机变量,X服从均匀分布U[0,1/5].

1、概率密度f(x,y)=f(x)*f(y)=25e^(-5y)0

设X1,X2……Xn是相互独立的随机变量序列且他们服从参数λ的泊松分布,则由中心极限定理知

用定义做就行lim(n->∞)P{[∑(1,n)Xi-n*E(Xi)]/[√n*√D(Xi)]≤x}=Φ(x)因为Xi~P(λ),所以E(Xi)=D(Xi)=λ,代到上式lim(n->∞)P{[∑(1