设x1x2xn是取自总体x的一个样本,在下列两种情形下,试求总体参数的矩估计

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 04:41:26
设x1x2xn是取自总体x的一个样本,在下列两种情形下,试求总体参数的矩估计
概率论与数理统计 设X1,X2,……,Xn是取自总体X~B(m,p)的一个样本,其中m已知,求p的矩估计量

EX=mp=(x1+x2+...+xn)/n所以p的矩估计量为(x1+x2+...+xn)/(mn)而E[(x1+x2+...+xn)/(mn)]=(E(x1)+E(x2)+...+E(xn))/(m

设X1,X2...,Xn是取自总体X~E(X)的一个样本,求样本X1,X2...Xn的联合概率密度;求总体参数λ的矩估计

首先应该是e(入)fxi(xi)=入e^(-入xi)i∈{1,2,...n}把所有乘一起,设联合密度=pp(x1,x2,x3.,xn)=入^ne^(-入nx)注意下面这个E(X)是期望值E(X)=1/

设(X1,X2,……,Xn)是取自正态总体N(U,δ^2)的样本,

EX(X上面一横杠)=E[(X1+X2+……+Xn)/n]=1/n[E(X1)+E(X2)+……+E(Xn)]=1/n(U+U+……+U)=U1516

设X1,X2,……Xn是总体X的样本,总体方差存在,X拔是样本均值,求X1与X拔的相关系数

给你点提示,你就能做出来了,D(X1+X拔)=D(X1)+D(X拔)+2Cov(X1,X拔)式中,D(X1+X拔)=D[(1+1/n)X1+1/n(X2+X3+……Xn)]=(1+1/n)^2D(X1

设总体X服从泊松分布 P(λ),X1,X2,…,Xn为取自X的一组简单随机样本,求λ的极大似然估计

x的平均值这个打不出来啊,大概思想是求出似然函数,就是n个泊松概率函数求积,然后取对数,就是ln(n个泊松概率函数求积),之后对λ求导,让得出来的式子等于零.再问:过程!!结果我知道

设X1X2X3X4是取自总体X~N(0,o^2)DE的样本,则统计量y=(x1+x2)^2/(x3-x4)^2服从自由度

若X1,X2,X3,X4独立,(X1+X2)服从N(0,8),则(1/8)(X1+X2)^2服从卡方1;(X3-X4)服从N(0,8),则(1/8)(X3-X4)^2服从卡方1;当C=1/8时,CY服

设总体X,X1,X2...Xn是取自总体X的一个样本,A为样本均值,则不是总体期望μ的无偏估计的是?

选B,因为他的期望不是是uE(A)=uE(X1+X2+X3)=E(X1)+E(X2)+E(X3)=3uE(0.2X1+0.3X2+0.5X3)=0.2E(X1)+0.3E(X2)+0.5E(X3)=u

总体X服从参数为P的0-1分布,(X1,X2,……,Xn)是取自X的样本 可以判断(X1,X2,……,Xn)~b(n,

(X1,…,Xn)是个随机向量,B(n,p)是一个随机变量的分布,二者维数不同.应该是X=X1+…+Xn~B(n,p)就对了,前提是诸Xi彼此独立.可以直接求X的分布列验证.

设总体X~(μ ,σ^2),μ ,σ^2是未知参数,(X1,X2,.Xn)是来自总体的一个样本,

1、∑(Xi-x)^2/σ^2~χ(n-1)2、样本方差S^2的定义:S^2=(1/(n-1))*∑(Xi-x)^2两者系数比较一下,选择C

关于方差存在的总体X,X1、X2...Xn是取自总体的简单随机样本,EX^2的矩估计量的问题

矩估计并不要求无偏估计,矩估计的要求就是用样本矩来代替总体矩,σ²是二阶中心矩,S²不是中心矩,因此矩估计时一般选σ²,这是符合矩估计定义的.而且在一次实验中其实也很难确

设总体X服从正态分布X~N(μ,σ^2),X1,X2,...,Xn为来自该总体的一个样本,则样本均值是

样本均值?那不直接是(X1+.+Xn)/n不过应该不是问这个吧可以说详细点?再问:是等于N(μ,σ^2)吗再答:有完整的题目么?这个X~N(μ,σ^2)意思是总体X服从总体均值为μ,总体标准差为σ的正

设总体X~U(0,θ),X1,X2,···,Xn是取自该总体的一个样本.X0是样本平均数.

对任意i,显然都有E(Xi)=θ/2,故E(θ1)=2E(X0)=2/n∑E(Xi)=2*θ/2=θ令t=X(n)为次序统计量,根据次序统计量的密度公式,其密度为g(t)=nF(t)^(n-1)p(t

设X1,X2……Xn是总体X的一个样本,如果总体的数学期望和方差都存在,即E(X)=μ,求

1、E(X')=u,D(X')=σ2/n,E(S2)=DX,2、最大似然估计:a=-1-n/(lnx1+lnx2+...+lnn)矩估计:a=(1-2X')/(X'-1)X'代表X-好多符号显示不了,

概率与统计设总体X为指数分布列P(x=k)=p(1-p)^(k-1) ,其中p为未知数,x1,x2,...xn为取自总体

你这个分布不是指数分布,是几何分布EX=1/p即p=1/EX所以X一把是对EX的矩估计p_hat=1/X一把

设X1,X2,...Xn是取自正态总体X~N(μ,σ^2)的一个样本,则1/(σ^2)∑(X-μ)^2 服从的分布是()

服从X^2(n-1)分布,那个X不是未知数X,长得像而已,手机打不出来,抱歉.因为(x-u)^2求和,等于n-1倍的样本方差平方,然后就是定理了,手机不好打阿~

设总体X~N(0,σ^2),参数σ>0未知,X1,X2,…Xn是取自总体X的简单随机样本(n>1)

(X1,…,Xn)是个随机向量,B(n,p)是一个随机变量的分布,二者维数不同.应该是X=X1…Xn~B(n,p)就对了,前提是诸Xi彼此独立.可以直接求X的