设X1X2是独立同分布的随机变量,E(Xn)=0 证明

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 06:52:15
设X1X2是独立同分布的随机变量,E(Xn)=0 证明
设X,Y是两个独立同分布的随机变量,分别表示两个电子元件的寿命(小时),其密度函数为:

因为x,y相互独立,所以求z=x/y的概率密度函数就等于x的密度函数即f(z)=1000/(z^2),z>1000;0,z

设A,B,C是三个相互独立的随机事件,证明A交B的逆与C独立

首先说明,两个事件A,B独立当且仅当P(AB)=P(A)P(B)因为A,B,C相互独立,所以P(ABC)=P(A)P(B)P(C),P(AB)=P(A)P(B),P(AC)=P(A)P(C),P(BC

设A,B为相互独立的随机事件,

根据题意,只有A发生的概率也就是说A发生且B不发生,可立式(1),同理,只有B发生的概率也就是说B发生且A不发生,可立式(2),P(A)*(1-P(B))=1/4(1)(1-P(A))*P(B)=1/

设随机变量X1,X2,.Xn,...是独立同分布,其分布函数为F(X)=a+(1/π)*arctan(x/b),b≠0,

B绝对值号的意义:保证所求的概率不会出现负数的尴尬情况

设A,B,C是三个互相独立的随机事件,证明1,AUB 上面有一横 与C互相独立,2,AB 上面有一横 与C互相独立

所以AnB上面有一横与C没有关系再问:说实在的我么明白,能说的明白点不再答:是数学题吗?AUB是并集。AUB=AB。都互相独立

设X与Y独立,下表给出了二维随机向量(X,Y)的分布、边缘分布中的部分概率值,试将

设二维随机向量(X;Y)的联合分布函数为:F(x,y)=A(B的联合概率密度函数关于X和Y的边缘(x,y)双重积分为1且利用还原

设随机变量X,Y独立同分布,X分布函数是F(x),那么Y分布函数是F(x)还是F(y)

独立同分布,那0么分布函数相同,F(x)=F(y),至于这道题,严格讲B也是正确的,只是表达不同,你说的那道题我看了,A选项应该是[F(z)]^2因为p(maxX,Y)=P(X

设随机变量X1,X2,---,Xn独立同分布且具有相同的分布密度,证明:P{Xn>max(X1,X2,...,Xn-1)

设X1...Xn的概率密度函数是fX(x),概率分布函数是FX(x)设随机变量Y=max(X1,...,Xn-1)先求Y的概率分布函数FY(y):FY(y)=P{Y

独立同分布中心极限定理中的同分布是指相同的离散型随机变量的分布还是相同的连续型随机变量的分布

中心极限定理(centrallimittheorem)是概率论中讨论××随机变量××序列部分和的分布渐近于正态分布的一类定理.这组定理是数理统计学和误差分析的理论基础,指出了大量随机变量近似服从正态分

设X1,X2...Xn 独立同分布的随机变量,证明X=(1/n)* ∑Xi 和∑(Xi-X)^2 相互独立.

记Y=∑(Xi-X)².X,Y一般不是相互独立的.例如n=3,X1,X2,X3都服从-1,1两点均匀分布.可以算得P(X=1)=(1/2)³=1/8.P(Y=0)=3·(1/2)&

设x,y是相互独立同服从几何分布的随机变量,即它们共同的分布率为p(x=k)=pq^(k-1),

解答过程如图,写出Z1,Z2取值与X,Y取值的关系就可计算了.经济数学团队帮你解答,请及时采纳.谢谢!

设X与Y独立,下表给出了二维随机向量(X,Y)的分布、边缘分布中的部分概率值?

看不见你的图,我举个例子给你吧y值1234x值00.10.020.010.0410.20.040.020.0320.110.060.030.0730.090.080.040.06P(X=0)就是把第一

独立同分布的随机事件英语怎么说

iidIndependentandidentically-distributedrandomvariables

关于独立同分布随机变量密度函数的求解

密度函数就是分布函数直接求导来的,你直接相乘没有任何道理,因为这是连续型随即变量不是离散型查看原帖

设随机变量X同Y独立同分布,它们取-1,1,两个值的概率分别为1/4 3/4,则P{XY=-1}=

P{XY=-1}=P{X=1,Y=-1}+P{X=-1,Y=1}=P{X=1}*P{Y=-1}+P{X=-1}*P{Y=1}=3/4*1/4+1/4*3/4=3/8

独立同分布 和期望与方差是相同的 这两个概念是不是同一个意思

同分布意味着期望和方差相同,但反过来不成立.毕竟期望和方差只是一阶矩和二阶矩,还有更高阶的矩存在.因此同分布事实上是很强的条件,更不必说是独立了

设X1,X2...Xn是独立同分布的正值随机变量.证明E[(X1+...+Xk)/(X1+...Xn)]=k/n,k≤n

因为(Xi/(X1+X2+……+Xn))的绝对值小于等于1,所以它的期望存在.由对称性,E[(X1)/(X1+...Xn)]=E[(X2)/(X1+...Xn)]=...E[(Xi)/(X1+...X