设X1X2是独立同分布的随机变量,E(Xn)=0 证明
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 06:52:15
再问:其他题目?
因为x,y相互独立,所以求z=x/y的概率密度函数就等于x的密度函数即f(z)=1000/(z^2),z>1000;0,z
首先说明,两个事件A,B独立当且仅当P(AB)=P(A)P(B)因为A,B,C相互独立,所以P(ABC)=P(A)P(B)P(C),P(AB)=P(A)P(B),P(AC)=P(A)P(C),P(BC
根据题意,只有A发生的概率也就是说A发生且B不发生,可立式(1),同理,只有B发生的概率也就是说B发生且A不发生,可立式(2),P(A)*(1-P(B))=1/4(1)(1-P(A))*P(B)=1/
B绝对值号的意义:保证所求的概率不会出现负数的尴尬情况
所以AnB上面有一横与C没有关系再问:说实在的我么明白,能说的明白点不再答:是数学题吗?AUB是并集。AUB=AB。都互相独立
设二维随机向量(X;Y)的联合分布函数为:F(x,y)=A(B的联合概率密度函数关于X和Y的边缘(x,y)双重积分为1且利用还原
1/2再问:为什么
独立同分布,那0么分布函数相同,F(x)=F(y),至于这道题,严格讲B也是正确的,只是表达不同,你说的那道题我看了,A选项应该是[F(z)]^2因为p(maxX,Y)=P(X
设X1...Xn的概率密度函数是fX(x),概率分布函数是FX(x)设随机变量Y=max(X1,...,Xn-1)先求Y的概率分布函数FY(y):FY(y)=P{Y
中心极限定理(centrallimittheorem)是概率论中讨论××随机变量××序列部分和的分布渐近于正态分布的一类定理.这组定理是数理统计学和误差分析的理论基础,指出了大量随机变量近似服从正态分
记Y=∑(Xi-X)².X,Y一般不是相互独立的.例如n=3,X1,X2,X3都服从-1,1两点均匀分布.可以算得P(X=1)=(1/2)³=1/8.P(Y=0)=3·(1/2)&
解答过程如图,写出Z1,Z2取值与X,Y取值的关系就可计算了.经济数学团队帮你解答,请及时采纳.谢谢!
看不见你的图,我举个例子给你吧y值1234x值00.10.020.010.0410.20.040.020.0320.110.060.030.0730.090.080.040.06P(X=0)就是把第一
iidIndependentandidentically-distributedrandomvariables
密度函数就是分布函数直接求导来的,你直接相乘没有任何道理,因为这是连续型随即变量不是离散型查看原帖
P{XY=-1}=P{X=1,Y=-1}+P{X=-1,Y=1}=P{X=1}*P{Y=-1}+P{X=-1}*P{Y=1}=3/4*1/4+1/4*3/4=3/8
同分布意味着期望和方差相同,但反过来不成立.毕竟期望和方差只是一阶矩和二阶矩,还有更高阶的矩存在.因此同分布事实上是很强的条件,更不必说是独立了
因为(Xi/(X1+X2+……+Xn))的绝对值小于等于1,所以它的期望存在.由对称性,E[(X1)/(X1+...Xn)]=E[(X2)/(X1+...Xn)]=...E[(Xi)/(X1+...X