设x~B(1.p)试求参数P的极大似然估计值
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 02:40:56
A逆交B实际上就是在B中不在A中,即B-(A交B),所以结果是y-z
泊松分布P{X=k}=(λ^k)·e^(-λ)/k!P{X=1}=λ·e^(-λ)P{X=2}=λ²·e^(-λ)/2因为P{X=1}=P{X=2}所以λ·e^(-λ)=λ²·e^
对参数为入1,入2的两个指数分布X1,X2P(X1>X2)=入1/(入1+入2)1/(1+1)=1/2E(a),E(b)为例P(X>Y)∫(0~)∫(0~y)abe^(-ax-by)dxdy=∫(0~
已知直线l过点P(2,0),斜率为.直线l和抛物线y2=2x相交于A、B两点,设线段AB的中点为M.求(1)P、M两点间的距离|PM|;(2)M点的坐标;(3)线段AB的长|AB|.详细解法如图:中点
因为随机变量服从X~(2,P)则,P(ξ≥1)=1-=a(a你没给出),可以求出p;那么,P(η≥1)=1-
F(x)=λ^ke^(-λ)/k!由P{X=0}=1/2得e^(-λ)=1/2λ=ln2则F(x)=(ln2)^k/2(k!)P{X>1}=1-P{X
P{X=1}=λ*e^(-λ)P{X=2}=0.5*(λ^2)*e^(-λ)所以λ*e^(-λ)=0.5*(λ^2)*e^(-λ)整理λ=0或λ=2λ≠0,所以λ=2P{X=0}=e^(-2)P{X=
P{X=1}=P{X=2},λ*e^-λ=λ^2*e^-λ/2λ=λ^2/2λ=2P{X=4}=2^4*e^-2/4!=2e^-2/3
X服从参数λ为的指数分布,则:EX=1/λ,X有分布函数:F(x)=1-e^(-λx),x>=0;于是P(X>EX)=1-P(X
X和1/X对应的概率是一样的,都是p*(1-p)^(n-1),那么E(1/X)=∑(1/k)*p*(1-p)^(k-1),其中,k从1到无穷.E(1/X)=p/(1-p)∑[(1-p)^k]/k=p/
由题设,X服从参数为λ的指数分布,知:DX=1λ2,λ>0,于是:P{X>DX}=P{X>1λ}=∫+∞1λλe−λxdx=−e−λx| +∞1λ=1e.
楼上的.是"Pleasestudyhard.”
P(Y=0)=P(X>1)=e^(-1)P(Y=1)=P(X
P(X=1)=pP(X=0)=1-p所以X的密度函数是P(X=a)=p^a*(1-p)^(1-a)a=0或1p未知,p∈[0,1]样本为X1……XN所以似然函数是L(x1,x2……xn;p)=(p^x
楼上的答案似乎不对P(X>1)=1-P(X=1)-P(X=0)=1-e^(-1)-e^(-1)-=1-2/e=0.26424
E[X]=NP;Var[X]=NP(1-P);矩估计:总体的一阶原点矩为E[X]=NP;样本的一阶原点矩为_X,用样本估计总体,有^p=_X/N;极大似然估计:^p=_X/N;
你应该知道,∑Px(k)=1吧?则∑Px(k)=λ(p+p^2+……)=λp/(1-p)=1.所以1-p=λp,所以p=1/(λ+1).
写出二元联合概率表如图,边缘概率是已知的,根据条件逐步填出表中的概率.经济数学团队帮你解答,请及时采纳.
(a-5)/2=1.29a-5=2.58a=7.58-
/>因为X服从参数为(2,p)的二项分布,且P{X≥1}=59,所以:P{X=0}=1-P{X≥1}=49,即:C02P0(1-P)2=(1-P)2=49,求解得:P=13,因为Y服从参数为(3,p)