设x~B(1.p)试求参数P的极大似然估计值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 02:40:56
设x~B(1.p)试求参数P的极大似然估计值
概率题,设p(A)=x,p(B)=y且p(A交B)=z,求p(A的逆交B).

A逆交B实际上就是在B中不在A中,即B-(A交B),所以结果是y-z

设随机变量X服从参数为λ的泊松分布,且P{X=1}=P{X=2},求数学期望和方差

泊松分布P{X=k}=(λ^k)·e^(-λ)/k!P{X=1}=λ·e^(-λ)P{X=2}=λ²·e^(-λ)/2因为P{X=1}=P{X=2}所以λ·e^(-λ)=λ²·e^

设随机变量x与y相互独立,都服从参数为1的指数分布,求P{X

对参数为入1,入2的两个指数分布X1,X2P(X1>X2)=入1/(入1+入2)1/(1+1)=1/2E(a),E(b)为例P(X>Y)∫(0~)∫(0~y)abe^(-ax-by)dxdy=∫(0~

已知经过点P(2,0),斜率为4/3的直线和抛物线y^2=2x相交于A,B两点,设线段AB的中点为M.求点M的做标.参数

已知直线l过点P(2,0),斜率为.直线l和抛物线y2=2x相交于A、B两点,设线段AB的中点为M.求(1)P、M两点间的距离|PM|;(2)M点的坐标;(3)线段AB的长|AB|.详细解法如图:中点

设随机变量x服从参数为(2,P)的二项分布,Y服从参数为(4,P)的二项分布

因为随机变量服从X~(2,P)则,P(ξ≥1)=1-=a(a你没给出),可以求出p;那么,P(η≥1)=1-

设随机变量X服从参数λ的泊松分布,且P{X=0}=1/2,求P{X>1﹜

F(x)=λ^ke^(-λ)/k!由P{X=0}=1/2得e^(-λ)=1/2λ=ln2则F(x)=(ln2)^k/2(k!)P{X>1}=1-P{X

设随机变量X服从参数为λ的泊松分布,且P{X=1}=P{X=2},则P{X>2}的值为

P{X=1}=λ*e^(-λ)P{X=2}=0.5*(λ^2)*e^(-λ)所以λ*e^(-λ)=0.5*(λ^2)*e^(-λ)整理λ=0或λ=2λ≠0,所以λ=2P{X=0}=e^(-2)P{X=

设随机变量X服从参数为λ的泊松分布,且已知P{X=1}=P{X=2},求P{X=4}.

P{X=1}=P{X=2},λ*e^-λ=λ^2*e^-λ/2λ=λ^2/2λ=2P{X=4}=2^4*e^-2/4!=2e^-2/3

设随机变量X服从参数λ 为的指数分布,则概率 P(X>EX)?

X服从参数λ为的指数分布,则:EX=1/λ,X有分布函数:F(x)=1-e^(-λx),x>=0;于是P(X>EX)=1-P(X

设随机变量X服从参数为p的几何分布,试证明:E(1/X)=(-plnp)/(1-p)

X和1/X对应的概率是一样的,都是p*(1-p)^(n-1),那么E(1/X)=∑(1/k)*p*(1-p)^(k-1),其中,k从1到无穷.E(1/X)=p/(1-p)∑[(1-p)^k]/k=p/

设随机变量X服从参数为λ的指数分布,则P{X>DX}

由题设,X服从参数为λ的指数分布,知:DX=1λ2,λ>0,于是:P{X>DX}=P{X>1λ}=∫+∞1λλe−λxdx=−e−λx| +∞1λ=1e.

设X服从0-1分布,X1,X2.XN是来自X的一个样本,试求参数P的极大似然估计值

P(X=1)=pP(X=0)=1-p所以X的密度函数是P(X=a)=p^a*(1-p)^(1-a)a=0或1p未知,p∈[0,1]样本为X1……XN所以似然函数是L(x1,x2……xn;p)=(p^x

设X服从参数为1的泊松分布,则P(X>1)

楼上的答案似乎不对P(X>1)=1-P(X=1)-P(X=0)=1-e^(-1)-e^(-1)-=1-2/e=0.26424

设总体x服从二项分布B(N,P),其中N已知,试求参数p的矩估计量和极大似然估计量

E[X]=NP;Var[X]=NP(1-P);矩估计:总体的一阶原点矩为E[X]=NP;样本的一阶原点矩为_X,用样本估计总体,有^p=_X/N;极大似然估计:^p=_X/N;

设随机变量x的分布律为:P(X=k)=λp^k(k=1,2,…),其中λ>0为已知常数,求参数p

你应该知道,∑Px(k)=1吧?则∑Px(k)=λ(p+p^2+……)=λp/(1-p)=1.所以1-p=λp,所以p=1/(λ+1).

设随机变量X~B(1,p),P(λ),并满足P{XY=0}=1,求(X,Y)的联合分布

写出二元联合概率表如图,边缘概率是已知的,根据条件逐步填出表中的概率.经济数学团队帮你解答,请及时采纳.

设随机变量X服从参数为(2,p)的二项分布,随机变量Y服从参数为(3,p)的二项分布,若P{X≥1}=59,

/>因为X服从参数为(2,p)的二项分布,且P{X≥1}=59,所以:P{X=0}=1-P{X≥1}=49,即:C02P0(1-P)2=(1-P)2=49,求解得:P=13,因为Y服从参数为(3,p)