设X~N(0,1),Y=E

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 21:14:44
设X~N(0,1),Y=E
设y=ln(1+x),求y^(n)

y=ln(1+x)y′=1/(1+x)y′′=-1/(1+x)²y′′′=(-1)(-2)[1/(1+x)³].y^n=(-1)(-2)...(-n+1)[1/(1+x)^n]

含步骤```设y= 1+1n(1-x) 求y'(0)1-x

y'=(1-x)/(1+x)y'(0)=(1-0)/(1+0)=1

设X,Y为相互独立的随机变量,且均服从N(0,1),求E[min(X,Y)].

Z=min(X,Y),Fmin(z)=1-{1-FX(z)}{1-FY(z)}.对Fmin(z)关于z求导,则求出min(X,Y)的概率密度.那么求E[min(X,Y)]根据公式即可!还有一种解法:Z

已知随机变量X,Y相互独立,且X~N(0,1) ,N(0,1),设z1=X^2+Y^2,z2=X+Y,则z2~;E(Z1

z2~N(0,2)E(z1)=E(X²)+E(Y²)=(0²+1²)+(0²+1²)=2fz2(z)=e^{-(z-2)²/4}/

设随机变量X~N(1,9),N(0,16),X与Y相互独立Z=X/3+Y/4,求E(Z),D(Z)

说实话,这个题不是一般的简单,只要套公式即可.E(Z)=1/3*1+1/4*0=1/3D(Z)=1/9*9+1/16*16=2

设随机变量X~N(0,1),N(0,1)且X,Y相互独立 求 E[X^2/(X^2+Y^2)]

瀑布汗.(X^2+Y^2)/(X^2+Y^2)=1E(1)=1再问:为什么E(1)=1?我知道(X^2+Y^2)/(X^2+Y^2)=1得出e(1)但为什么E(1)=1?再答:常数的期望等于自己,这题

设随机变量X,Y相互独立,且E(X)=E(Y)=0,D(X)=D(Y)=1,试求E[(X+Y)^2].

E[(X+Y)^2]=D(X+y)+[E(x+y)]^2,D(X+y)=D(x)+D(y)=2.E(x+y)=E(x)+E(y)=0;所以E[(X+Y)^2]=2不对么?

设随机变量X~N(0,1),Y=X²,求Y的概率密度.

X的概率密度函数:f_X(x)=1/√(2π)·e^(-x^2/2)y≤0时,F_Y(y)=P{Y再问:X的概率密度函数:f_X(x)=1/√(2π)·e^(-x^2/2)...这个是怎么得到的再答:

设 e^(x+y) - xy = 1,求 dy/dx \ x=0 y=0

e^(x+y)-xy=1两边同时求导,e^(x+y)*(1+dy/dx)-y-xdy/dz=0(1)验证x=0,y=0在原曲线上.令x=0,y=0代入到(1)e^0*(1+dy/dz)-0-0*dy/

设X Y 相互独立,且服从N(0,1)分布,试求E(根号(X^2+Y^2))

φ(x)=[1/(根号2π)]e^[-(x^2)/2]故:f(x,y)=φ(x)*φ(y)=[1/(2π)]e^[-(x^2+y^2)/2].故:E((X^2+Y^2)^(1/2))=∫∫[(x^2+

设X Y 相互独立,且服从N(0,1)分布,试求E(根号(X^2+Y^2))

根号(2*pi)积分可以化成极坐标做.

设X,Y为相互独立的随机变量,且均服从N(0,1),求E[min(X,Y)]

Z=min(X,Y),Fmin(z)=1-{1-FX(z)}{1-FY(z)}.对Fmin(z)关于z求导,则求出min(X,Y)的概率密度.那么求E[min(X,Y)]根据公式即可!还有一种解法:Z

大学概率:设随机变量(X,Y)具有分布函数F(x,y)=1-e^(-x)-e^(-y)+e^(-x-y),x>0,y>o

详细过程请见下图,希望对亲有帮助(看不到图的话请Hi我,审核要一段时间)

设随机变量X~N(1,4),N(1,2),且X与Y相互独立.则E(X-2Y)=?D(X-2Y)=?

E(aX+BY)=aEx+bEy.D(aX+bY)=a^2DX+b^2DY.所以:E(X-2Y)=EX-2EY=1-2=-1.D(X-2Y)=DX+4DY=4+4*2=12.

设函数y=e x+1次方 则y的n次方等于什么 急

y=e^(x+1);y^n=e^n(x+1)(x→1)lim(x^3-2x+1)/(X^2-1)=1∫(1+xe^5x)/xdx=∫1/xdx+∫e^(5x)dx=lnx+(1/5)e^5x+C

设随机变量X~N(-3,1),N(36,0.1),且XY独立,则E(X+Y)^2=

解析E(X)=-3E(Y)=3.6E(X+Y)=-3+3.6=0.6E(X+Y)²=0.36

概率论习题1.设随机变量X~N(0,1),求Y=|X|的密度函数.2.设X服从参数为2的指数分布,试证明:Y=1-e^(

1、用分布函数法求F(y)=P(|x|<y)当y≤0时,F(y)=0当y>0时,F(y)=∫〔1/√(2π)〕*e^〔-(x^2/2)〕*dx(-y≤x≤y)当y≤0时,F’(y)=0当y>0时,F’

考研 设随机变量X~N(0,1),N(0,1)且X,Y相互独立 求 E[X^2/(X^2+Y^2)]

可以这么做:因为X,Y相互独立,所以E[X^2/(X^2+Y^2)]=E[Y^2/(X^2+Y^2)].而E[X^2/(X^2+Y^2)]+E[Y^2/(X^2+Y^2)]=E[(X^2+Y^2)/(

设随机变量x~n(0,1),令y=e^-x求概率密度函数

N(0,1),y=e^(-x)y>0X的密度函数是fX(x)=1/√2π*e^(-x^2/2)那么FY(y)=P(Y0