设X~N(1,4),X1,X2,-Xn为X的样本,则

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 03:29:51
设X~N(1,4),X1,X2,-Xn为X的样本,则
设集合A={x|x=1/3的n次方,n属于N},若x1属于A,x2属于A,求x1/x2是否属于集合A

设X1=1/3的n次方,X2=1/3的m次方,n、m属于N.则x1/x2=1/3的n-m次方,显然只有当n-m>0时即X1

已知方程组:y2=4x y=2x+n的两组解为x1=x2 ,y1=y2 和x2=x2,y1=y2 且x1不等于x2,设m

y^2-4x=0y^2-4y+2n=0有两不相同的解即:16-8n>0n再问:麻烦详细点,看不懂

)设X服从N(0,1),(X1,X2,X3,X4,X5,X6)为来自总体X的简单随机样本,Y=(X1+X2+X3+)^2

(X1,X2,X3,X4,X5,X6)为来自总体X的简单随机样本所以(X1+X1+X3)~N(0,3)(X4+X5+X6)~N(0,3)所以而1/√3(X1+X1+X3)~N(0,1);1/√3(X4

设A(x1,y1),B(x2,y2)是椭圆y^2/4+x^2=1上的两点,已知向量m=(x1,y1/2),向量n=(x2

我是用几何方法做的.注意向量m,n的特征,于是对椭圆方程做代换:y'=y/2,也即y=2y',(就是把椭圆按y轴方向压扁到原来的1/2)得到:x^2+(y')^2=1是半径为1的圆,也就是说m和n(m

设3x²+2x-3=0,两根为x1,x2,求①x2/x1 + x1/x2 ②x1^2+x2^2-4x1x2

根据韦达定理有X1+X2=-b/a=-2/3,X1*X2=c/a=-3/3=-1①x2/x1+x1/x2=(x2²+x1²)/(x1x2)=【(x1+x2)²-2x1x2

设x1,x2是关于x的方程x²-4x+2k+1=0的两个实数根, 且x1²+x2²=10,

由一元二次方程根与系数的关系可知x1+x2=-(-4)/1=4x1x2=2k+1/1=2k+1已知x1²+x2²=10∵(x1+x2)2=x1²+2x1x2+x2

设集合A={X|x=1/3的n次方,n∈N},若x1∈A,x2∈A,则必有

通过代数可排除a和c,对于d因为X有范围限制,所以也排了,答案为b!例当n为1或2时,将得出的数分别带入选项,就可知了,N表示自然数集,不包括负数!兄弟,看我码字这么累就把分给我吧!

设集合A={X|x=1/3的n次方,n∈N},若x1∩A,x2∈A,则必有

你的问题能不能稍微说清楚点,x1∩A,x2∈A,这是什么概念

设x1、x2是方程3x2+4x-5=0的两根,则1x

根据题意得x1+x2=-43,x1•x2=-53,所以1x1+1x2=x1+x2x1x2=−43−53=45,x12+x22=(x1+x2)2-2x1•x2=(-43)2-2×(-53)=469.故答

设x1,x2是一元二次方程x

解题思路:利用一元二次方程根与系数的关系求解。解题过程:最终答案:略

设函数f(x)=x2+(2a-1)x+4,若x1<x2,x1+x2=0时,有f(x1)>f(x2),则实数a的取值范围是

由x1<x2,x1+x2=0可得x1<0<-x1由f(x1)>f(x2),可得f(x1)>f(-x1)∴-x1离对称轴比x1离对称轴近∴−2a−12>0∴a<12故选D

设总体X~N(0,1),从此总体中取一个容量为6的样本X1,X2...X6,设Y=(X1+X2+X3)的平方+(X4+X

根据线性关系有:(X1+X2+X3)~N(0,3),:(X4+X5+X6)~N(0,3),所以(1/3)*[(X1+X2+X3)^2(的平方)]~X(1)(X是卡方分布符号),(1/3)*[(X4+X

设总体X~N(0,σ^2),X1、X2为X的样本,求证(X1+X2)^2/(X1-X2)^2服从分布F(1,1)

N(0,σ^2)E(X1+X2)=EX1+EX2=0D(X1+X2)=DX1+DX2=2σ^2X1+X2~N(0,2σ^2)同理:X1-X2~N(0,2σ^2)所以1/√2σ(X1+X2)~N(0,1

设集合A={x|x=1/3^n,n∈N},若x1∈A,x2∈A,则必有

设x1=1/3^px2=1/3^qx1x2=1/3^(p+q)因为x1∈A,x2∈A所以pq均∈N所以(p+q)∈Nx1x2∈A

设总体X~N(12,4),x1,x2,x3……x16为样本,X头上一横为样本均值,计算P{丨样本均值-12丨>1}

4是方差?x1+..x16~N(12*16,4*16)均值-12=(x1+..x16-12*16)/16P(|均值-12|>1)=P(|x1+..x16-12*16|>16)即求16个样本和的分布同其

设排列x1 ix.xn的逆序数是k,求排列xn x(n-1) .x2 x1的逆序数

相对逆序的概念,也可以定义个正序的概念;一个排列逆序的总数称为逆序数,那么相应地也有正序数的概念--正序的总数;对于一个n个数组成的排列,组合数Cn2就是在n个数中任取两个数的种数;这里Cn2=n(n

设x1,x2(x1

根据韦达定理:x1+x2=-2(1)x1x2=-1(2)(1)^2-4(2)=(x1-x2)^24+4=(x1-x2)^2x1-x2=±2√2再问:当x1<x2的时候,那x1-x2是不是就只等于-2√

1 总体X~N(2,4),X1,X2,X3,X4为样本,则(X1+X2+X3+X4)/4~( )

因为正态分布具有再生性,就是由这些样本经过变形组成的样本空间,仍然服从正态分布N(2,4),则E(X)=2,D(X)=4则E[(X1+X2+X3+X4)/4]=1/4[E(X1)+E(X2)+E(X3