设X为总体的一个样本,求最大似然估计量

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 15:22:24
设X为总体的一个样本,求最大似然估计量
设总体X的概率密度为f(x),X1,X2……Xn是来自X的样本,求θ的矩估计量和最大似然估计量

L=f(x1)f(x2)...f(xn)=θ^n(1-x1)^(θ-1).(1-xn)^(θ-1)..lnL=nlnθ+(θ-1)[ln(1-x1)(1-x20...(1-xn)]dln/dθ=n/θ

设(X1,X2,...,Xn)为总体X~N(0,1)的一个样本,X拔为样本均值,S^2为样本方差,则有( )

选DX拔=0,所以A、B错C由单正态总体的抽样分布定理得X拔/(S/根号n)~t(n-1),C错D中把n-1移到分母里面,得到分子是自由度为1的卡方分布,分母是自由度为n-1的卡方分布,满足F分布的定

设总体X~N(40,25的平方),从总体X中抽取一个容量为100的样本,求样本均值与总体均值之差的绝对值大于5的概率.

2(1-Φ(2)),然后查正态分布表,用的是同分布中心极限定理.不好打,就是把样本均值与总体均值之差标准化,除以σ/√n,然后5也除以这个,因为这个标准正态分布关于Y轴对称,所以就2倍的那个了.

设X1,X2,...Xn为来自正态总体X~N(μ,σ^2)的一个样本,μ已知,求σ^2的极大似然估计.

f(x1)=1/(2piσ^2)^0.5*exp[-(x1-μ)^2/2σ^2]...f(xn)=1/(2piσ^2)^0.5*exp[-(xn-μ)^2/2σ^2]L=f(x1)*f(x2)...f

设总体X,X1,X2...Xn是取自总体X的一个样本,A为样本均值,则不是总体期望μ的无偏估计的是?

选B,因为他的期望不是是uE(A)=uE(X1+X2+X3)=E(X1)+E(X2)+E(X3)=3uE(0.2X1+0.3X2+0.5X3)=0.2E(X1)+0.3E(X2)+0.5E(X3)=u

概率论的一个题目设总体X服从(0-1)分布,X1,X2,……,Xn为X的一个样本,求p的极大似然估计.

设总体X服从(0-1)分布,P(X=1)=p,P(X=0)=1-p.似然函数L(p)=p^x1(1-p)^(1-x1)*...*p^xn(1-p)^(1-xn)=p^(x1+...+xn)*(1-p)

181.设总体 的密度函数为 其中 为未知参数.为总体的一个样本,求参数 的极大似然估计量.

极大似然估计的方法:1、构造似然函数,L(x1,x2,...,xn)=每个Xi密度函数的连乘.每个Xi的密度函数与总体的密度函数相同.2、求L(x1,x2,...,xn)或lnL(x1,x2,...,

设总体X服从正态分布X~N(μ,σ^2),X1,X2,...,Xn为来自该总体的一个样本,

U=n^(1/2)*(xˉ-μ)/σ服从标准正态分布,即UN(0,1),因此,D(U)=1.

设总体X服从正态分布X~N(μ,σ^2),X1,X2,...,Xn为来自该总体的一个样本,则样本均值是

样本均值?那不直接是(X1+.+Xn)/n不过应该不是问这个吧可以说详细点?再问:是等于N(μ,σ^2)吗再答:有完整的题目么?这个X~N(μ,σ^2)意思是总体X服从总体均值为μ,总体标准差为σ的正

设总体X服从正态N(μ,σ²),x1,x2,xn为其总体的样本,求该样本的联合概率密度

fX(x)=φ((x-u)/σ)/σf(X1,X2,...Xn)=fX1(x1)fX2(x2)..fXn(xn)=(1/√(2π)σ)^n*e^Σ(xi-u)²/(2σ)如有意见,欢迎讨论,

设总体X~P(λ),则来自总体X的样本X1,X2.Xn的样本概率分布为

样本与总体同分步,也是P(λ),这是数理统计的规定.希望可以帮到你,如果解决了问题,请点下面的"选为满意回答"按钮,

设总体X的密度函数为 ,现已知样本均值为 ,求参数θ的矩法估计值 .

u=∫x/(θ-5)dx=x^2/2(θ-5)│(5~θ)=(θ+5)/2而μ‘=x’故(θ‘+5)/2=12得到θ’=19

设总体X服从自由度为m的伽方分布,(X1,X2...Xn)是其中一个样本,求样本均值的密度函数

1.由伽方分布的性质有:\x0dY=X1+X2+...+Xn服从自由度为nm的伽方分布,记其密度为fY(t).\x0d2.样本均值Z=Y/n,Z的分布函数记为FZ(z)=P{Z<=z}=P{Y&

设总体X~N(μ,16),X1,X2,...X9是来自该总体的一个样本,求样本方差介于6~14之间的概率

样本方差Sn运用定理(n-1)Sn^2/σ^2服从自由度为(n-1)的χ方分布代入数据(9-1)*6/16=3(9-1)*14/16=7查表+线性插入计算得P(χ^2(8)>3)=0.932P(χ^2

设X1 X2…… Xn是来自总体的一个样本 求样本均值 样本方差

均值=(X1+X2+.+Xn)/n方差=[(X1-均值)^2+(X2-均值)^2+.+(Xn-均值)^2]/n