设X服从0-1分布,求参数P的极大似然估计值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 20:45:57
设X服从0-1分布,求参数P的极大似然估计值
设随机变量X服从参数为λ的泊松分布,且P{X=1}=P{X=2},求数学期望和方差

泊松分布P{X=k}=(λ^k)·e^(-λ)/k!P{X=1}=λ·e^(-λ)P{X=2}=λ²·e^(-λ)/2因为P{X=1}=P{X=2}所以λ·e^(-λ)=λ²·e^

设X服从参数为1的泊松分布,Y服从参数为4,0.5的二项分布,且x,y相互独立,求E(XY)

由于相互独立,EXY=EX*EY=1*2=2泊松分布的期望等于纳姆达=1二项分布的期望等于np=4*0.5=2

设随机变量X服从(0,1)上的均匀分布 Y服从参数为λ=1的指数分布 X与Y独立 求Z=min(X,Y)的分布函数和分布

Z=min(X,Y)的分布函数F(z)=P(Z=z)Z=min(X,Y)>=z说明XY同时大于等于z=1-P(X>=z,Y>=z)XY独立=1-P(X>=z)P(Y>=z)=1-(1-z)exp(-z

离散型随机变量问题设X服从参数为P的0~1分布,求X的分布函数.我想问的是,F(X)为什么要分成3种情况.“因为是离散型

按照定义来看,分布函数F(x)=P{X<x},0-1分布的话,就是取0的概率为1-p,取1概率为p,那么当x≤0时,显然F(x)=P{X<x}=0,当0<x≤1时,F(x)=P{X<x}=p,这是因为

设随机变量X,服从参数T,T>0的泊松分布,求E(X平方)

E(X^2)=E(X^2-X+X)=E[X(X-1)+X]=E[X(X-1)]+E(X)=∑(k=0→∞)k(k-1)T^ke^(-T)/k!+∑(k=0→∞)kT^ke^(-T)/k!=∑(k=2→

设随机变量x服从参数为p的几何分布,M>0为整数,Y=max(X,M),求E(Y)

用随机变量函数的期望公式.请采纳,谢谢!

设随机变量X服从参数y的泊松分布,且E(X—1)(X—2)=1,则P{X>=1}=

首先E(X-1)(X-2)=E(X^2-3X+2)=1.因为DX=EX=Y.解出来Y=1.带入到泊松分布中,因为泊松分布是从0开始到正无穷.所以P{X>=1}=1-e

设随机变量X服从参数λ的泊松分布,且P{X=0}=1/2,求P{X>1﹜

F(x)=λ^ke^(-λ)/k!由P{X=0}=1/2得e^(-λ)=1/2λ=ln2则F(x)=(ln2)^k/2(k!)P{X>1}=1-P{X

设随机变量X服从参数为λ的泊松分布,且P{X=1}=P{X=2},则P{X>2}的值为

P{X=1}=λ*e^(-λ)P{X=2}=0.5*(λ^2)*e^(-λ)所以λ*e^(-λ)=0.5*(λ^2)*e^(-λ)整理λ=0或λ=2λ≠0,所以λ=2P{X=0}=e^(-2)P{X=

设随机变量X服从参数为λ的泊松分布,且已知P{X=1}=P{X=2},求P{X=4}.

P{X=1}=P{X=2},λ*e^-λ=λ^2*e^-λ/2λ=λ^2/2λ=2P{X=4}=2^4*e^-2/4!=2e^-2/3

概率论问题,设X.Y相互独立.且都服从参数为1的柏松分布,求X+Y服从哪种分布?

X.Y参数为1的柏松分布,则其母函数为Ψ(s)=e^(s-1)X.Y相互独立,X+Y母函数为Ψ(s,s)=Ψ(s)*Ψ(s)=e^(2(s-1))X+Y服从参数为2的泊松分布.再问:能再详细点吗。再答

设随机变量X服从参数为p的几何分布,试证明:E(1/X)=(-plnp)/(1-p)

X和1/X对应的概率是一样的,都是p*(1-p)^(n-1),那么E(1/X)=∑(1/k)*p*(1-p)^(k-1),其中,k从1到无穷.E(1/X)=p/(1-p)∑[(1-p)^k]/k=p/

设随机变量X服从参数为λ的泊松分布,且p{X=1}=p{X=2},则EX=?DX=?

有些符号不会打.但有这样的结论:泊松分布的数学期望与方差相等,都等于参数λ.因为泊松分布只含有一个参数,只要知道它的数学期望或者方差就能完全确定它的分布

设X服从0-1分布,X1,X2.XN是来自X的一个样本,试求参数P的极大似然估计值

P(X=1)=pP(X=0)=1-p所以X的密度函数是P(X=a)=p^a*(1-p)^(1-a)a=0或1p未知,p∈[0,1]样本为X1……XN所以似然函数是L(x1,x2……xn;p)=(p^x

设随机变量X服从参数为1的泊松分布,则P{X=EX2}=______.

由于随机变量X服从参数为1的泊松分布,所以:E(X)=D(X)=1又因为:DX=EX2-(EX)2,所以:EX2=2,X 服从参数为1的泊松分布,所以:P{X=2}=12e−1,故答案为:1

设X服从参数为1的泊松分布,则P(X>1)

楼上的答案似乎不对P(X>1)=1-P(X=1)-P(X=0)=1-e^(-1)-e^(-1)-=1-2/e=0.26424

设随机变量X服从参数为λ的泊松分布,且P{X=1}=P{X=2},则EX=? DX=?

随机变量X服从参数为λ的泊松分布P{X=k}=e^(-λ)*λ^k/k!P{X=1}=e^(-λ)*λ^1/1!P{X=2}=e^(-λ)*λ^2/2!若P{X=1}=P{X=2}λ=2E(x)=D(