设x服从正态分布N(0,1),Y=2*x+1,则Y服从
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 04:52:16
A-YN(-1,2)X-YN(0,2+2)=N(0,4)(X-Y)/2N(0,4/2^2)=N(0,1)选A再问:虽然看懂了...不过可以这么做的依据是什么啊?就是说,为什么可以对XY做运算?再答:这
E(Y)=E(200X185)=2185,D(Y)=200²D(X)=100²,P{2070<P<2300}=P{(2070-2185)/100<(Y-2185)/100<(230
N(0,1)N(1,1)XY独立所以X+Y和X-Y都是服从正态分布的而且E(X+Y)=EX+EY=1,D(X+Y)=DX+DY=2所以X+Y~N(1,2)所以P(X+Y=0)=Φ((0-1)/√2)=
注意到Y-1也是N(0,1)与同分布,即是求P[3X+4(Y-1)
X²/1,Y²/1均服从自由度为1的χ²分布.按照F分布的定义,(X²/1)/(Y²/1)=X²/Y²,服从自由度为(1,1)的F
随机变量x,y相互独立都服从N(0,1)则f(x,y)=fX(x)fY(y)=1/(2π)e^(-x²-y²)P(X^2+Y^2
设A=E(X^2/(X^2+Y^2)),B=E(Y^2/(X^2+Y^2)),A+B=1,A-B=0.所以...A=0.5
Y=(X+3)/2由X~N(-3,4)知,μ=-3,σ=2.则Y=(X-μ)/σ=(X+3)/2服从标准正态分布N(0,1)
X,N(0,0,1,1,0)说明X,Y独立同分布N(0,1)fX(x)=φ(x).P(X+Y0)=P(X>0,Y>0)+P(X
E(X)=0,D(X)=E(X^2)=1,E(X^3)=0E(X^4)=3E(Y)=2*E(X^2)+E(X)+3=5E(XY)=2*E(X^3)+E(X^2)+3*E(X)=1E(Y^2)=4*E(
回答:设他们的概率密度分别是f(x)和f(y),分布函数分别是F(x)和F(y).那么f(x=1)≠f(y=3).注意不等号“≠”.但是F(x=1)=F(y=3).注意等号“=”.一个变量X的概率“密
正态分布的线性函数还是正态分布E(Y)=E(1-2X)=1-2EX=1D(Y)=D(1-2X)=4D(X)=4故Y~N(1,4)
标准的正态分布直接查表就行~这种式子正常人是算不出来的.先给你两个式子P(ξ<x)=F(x);P(a<ξ<b)=F(b)-F(a).F(x)就是你的标准正态分布表N(0,1)所对应的数值.另外ξ的分布
1,P(0.02
P{|X|>k}=0.1P{X<k}=1-P{|X|>k}/2=0.95
这是两道题吧.X~N(0,3)所以mu1=0sigma1=根号3Y~N(0,4)mu2=0sigma2=2相关系数=-1/4=r,这里是二维正态概率密度函数的方程,你把以上5个参数带进去,就是所求.h
P(X≤0)=0.5,因为正态分布的均值是0,则图像关于Y轴对称,也就是Y轴左右两边的面积都是0.5.由于A、B互斥,则A发生B一定不发生,也就是说A发生B不发生的概率=A发生的概率=1/4.正态分布