设x服从泊松分布
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 16:12:46
X+Y服从参数为(a1+a2)的泊松分布,因为泊松分布具有可加性,证明见参考资料
依题意可以得到λ=3,;所以E(X)=D(X)=3;而D(X)=E(X^2)-E(X)^2=3;所以E(X^2)=E(X)^2+D(X)=12;
X~π(a)Y~π(b)π(a)π(b)为柏松分布则P{X=k}=(a^k)e^(-a)/k!P{Y=m}=(b^m)e^(-b)/m!k,m=0,1,2.因为X,Y相互独立则他们的联合分布P{X=k
若是没有记错的话,虽然卷积公式在连续型随机变量中提出来,但是有说过对于离散型随机变量也可使用,把那个积分改成求和就行了再问:能具体为我证明此题吗?谢谢再答:不知道公式怎么打,只能简要说一说:因为X、Y
由于相互独立,EXY=EX*EY=1*2=2泊松分布的期望等于纳姆达=1二项分布的期望等于np=4*0.5=2
这个用泊松分布可加性来做,很简单X,Y相互独立且分别服从p(λ1),p(λ2)那么Z=X+Yp(λ1+λ2)参考资料里有他的证明
要用到微积分吗?具体公式给下回答:=Σ(3^I*e^(-3)I/I!)(3^(K-I)*e^(-3)I/(K-I)!)=Σ(3^I*3^(K-I)e^(-3)*e^(-3)/I!*(K-I)!)=Σ[
设X服从泊松分布,参数为λ,那么EX=λ,DX=λ,所以E[X(X-1)]=E(X^2)-EX=DX+(EX)^2-EX=λ+λ^2-λ=λ^2.也可以直接根据定义E[X(X-1)]=sum(n(n-
如果泊松参数为a,答案为(1-e^-a)/a,不保证算对,总之你把表达式展开应该能发现它和某个泰勒公式很相近
E(X^2)=E(X^2-X+X)=E[X(X-1)+X]=E[X(X-1)]+E(X)=∑(k=0→∞)k(k-1)T^ke^(-T)/k!+∑(k=0→∞)kT^ke^(-T)/k!=∑(k=2→
因为X服从泊松分布,所以DX=EX=5,则D(X–1)=DX=5
首先写出似然函数LL=∏p(xi)=∏{[(λ^xi)/(xi!)]·e^(-λ)}=e^(-nλ)·∏{[(λ^xi)/(xi!)]=e^(-nλ)·λ^(∑xi)·∏1/(xi!)然后对似然函数取
X~π(2)E(x)=2D(X)=2D(X)=E(X^2)-[E(X)]^22=E(X^2)-4E(X^2)=6
lambda
由于随机变量X服从参数为1的泊松分布,所以:E(X)=D(X)=1又因为:DX=EX2-(EX)2,所以:EX2=2,X 服从参数为1的泊松分布,所以:P{X=2}=12e−1,故答案为:1
参数为2的泊松分布,其期望就等于参数2即,E(X)=2∴ E(2X)=2E(X)=4……【期望的性质E(CX)=CE(X)】再问:
P(X=2)=[9e^(-3)]/2
泊松分布的期望Ex=λ=4,Dx=λ=4PS:泊松分布式(λ^k)/k!*e(-λ)
楼上的答案似乎不对P(X>1)=1-P(X=1)-P(X=0)=1-e^(-1)-e^(-1)-=1-2/e=0.26424
泊松分布P(X=k)=e^(-λ)*λ^k/k!期望和方差均为λEX=λ=5所以P(X=k)=e^(-5)*5^k/k