设X服从泊松分布,且P{X=0}=0.4

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 04:13:36
设X服从泊松分布,且P{X=0}=0.4
设随机变量X服从参数为λ的泊松分布,且P{X=1}=P{X=2},求数学期望和方差

泊松分布P{X=k}=(λ^k)·e^(-λ)/k!P{X=1}=λ·e^(-λ)P{X=2}=λ²·e^(-λ)/2因为P{X=1}=P{X=2}所以λ·e^(-λ)=λ²·e^

大学概率论 方差.设随机变量x服从泊淞分布,且p={x=1}=p{x=2},求

p={x=1}=p{x=2}c^1/1!*e^(-c)=c^2/2!*e^(-c)2c=c^2c=2EX=-DX=2

设随机变量X,Y相互独立,且都服从两点分布B 则P(X=Y)=

P(X=Y)=P(X=0)P(Y=0)+P(X=1)P(Y=1)=1/9+4/9=5/9如有意见,欢迎讨论,共同学习;如有帮助,再问:为什么这么算啊?再答:根据独立性。书上讲更全面一些,建议您看书。

设随机变量X和Y相互独立,且服从同一分布,证明P(X小于等于Y)=1/2

X,Y互相独立设X的密度函数为f(x),Y的密度函数为f(y)它们的联合密度函数为f(x,y)=f(x)f(y)f(y,x)=f(y)f(x)=f(x,y)f(x,y)关于y=x对称P(X

x服从泊松分布,p(x=0)=0.4,求p(x>2)!

p(x=0)=0.4=e^(-λ)λ=-ln0.4p(x=1)=-0.4ln0.4p(x=2)=0.4ln²0.4p(x>2)=1-P(x=0)-P(x=1)-P(x=2)=1-0.4(ln

设离散型随机变量X服从泊松分布,且E(X) =5.则D(X–1)=?

因为X服从泊松分布,所以DX=EX=5,则D(X–1)=DX=5

设随机变量X服从参数y的泊松分布,且E(X—1)(X—2)=1,则P{X>=1}=

首先E(X-1)(X-2)=E(X^2-3X+2)=1.因为DX=EX=Y.解出来Y=1.带入到泊松分布中,因为泊松分布是从0开始到正无穷.所以P{X>=1}=1-e

设随机变量X服从参数λ的泊松分布,且P{X=0}=1/2,求P{X>1﹜

F(x)=λ^ke^(-λ)/k!由P{X=0}=1/2得e^(-λ)=1/2λ=ln2则F(x)=(ln2)^k/2(k!)P{X>1}=1-P{X

设随机变量X服从参数为λ的泊松分布,且P{X=1}=P{X=2},则P{X>2}的值为

P{X=1}=λ*e^(-λ)P{X=2}=0.5*(λ^2)*e^(-λ)所以λ*e^(-λ)=0.5*(λ^2)*e^(-λ)整理λ=0或λ=2λ≠0,所以λ=2P{X=0}=e^(-2)P{X=

设随机变量X服从参数为λ的泊松分布,且已知P{X=1}=P{X=2},求P{X=4}.

P{X=1}=P{X=2},λ*e^-λ=λ^2*e^-λ/2λ=λ^2/2λ=2P{X=4}=2^4*e^-2/4!=2e^-2/3

设随机变量X服从参数为λ的泊松分布,且已知P{X=1}=2/e²,则λ=?

λ=2由泊松分布密度函数可知:P{X=1}=e^(-λ)*λ=2/e²,可得λ=2.

设随机变量X服从参数为λ的泊松分布,且p{X=1}=p{X=2},则EX=?DX=?

有些符号不会打.但有这样的结论:泊松分布的数学期望与方差相等,都等于参数λ.因为泊松分布只含有一个参数,只要知道它的数学期望或者方差就能完全确定它的分布

设随机变量X服从泊松分布,且P(X=1)=P(X=2),则P(X=4)=______.

随机变量X服从泊松分布,且P(X=1)=P(X=2),所以:P(X=i)=e−λλii!即:e−λλ=e−λλ22!得:λ=2P(X=4)=23e−2

2、设随机变量X服从参数 的泊松分布( 入>0)且已知E[(x-2)(X-3)]=2,求入的值.

由泊松分布知道E(x)=D(x=)λ,则可知E[(x-2)(X-3)]=E(x^2-5x+6)=E(x^2)-5E(x)+6=D(x)+(E(x))^2-5E(x)+6=λ+λ^2-5λ+6=2即λ^

设随机变量X服从参数为1的泊松分布,则P{X=EX2}=______.

由于随机变量X服从参数为1的泊松分布,所以:E(X)=D(X)=1又因为:DX=EX2-(EX)2,所以:EX2=2,X 服从参数为1的泊松分布,所以:P{X=2}=12e−1,故答案为:1

设X服从参数为1的泊松分布,则P(X>1)

楼上的答案似乎不对P(X>1)=1-P(X=1)-P(X=0)=1-e^(-1)-e^(-1)-=1-2/e=0.26424

设X服从泊松分布,且期望EX=5,写出其概率分布律

泊松分布P(X=k)=e^(-λ)*λ^k/k!期望和方差均为λEX=λ=5所以P(X=k)=e^(-5)*5^k/k

设随机变量X服从参数为λ的泊松分布,且P{X=1}=P{X=2},则EX=? DX=?

随机变量X服从参数为λ的泊松分布P{X=k}=e^(-λ)*λ^k/k!P{X=1}=e^(-λ)*λ^1/1!P{X=2}=e^(-λ)*λ^2/2!若P{X=1}=P{X=2}λ=2E(x)=D(