设Y=COS(X),则Y(PAI 2)的导数?
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 03:43:10
楼上的少写了“-”和“dx”吧dy=2cos(x+1)•[-sin(x+1)]dx=-sin2(x+1)dx
再答:再问:dy再答:����ѽ��再问:��dy再问:û�ĵ�再答:
sin(x+y)sin(x-y)=[sinxcosy+sinycosx][sinxcosy-cosxsiny]=(sinxcosy)^2-(cosxsiny)^2=(1-cos^2y)cos^2y-c
对dy=cos(1+x)d(1+x)=cos(1+x)dx
由隐函数微分法可得:-sin(x+y)(1+y′)+y′=0-sin(x+y)+[1-sin(x+y)]y′=0∴y′=sin(x+y)/[1-sin(x+y)].
设y=y(x)由方程ysinx=cos(x-y)所确定,则y'(0)=x=0时cos(-y)=cosy=0,故y=π/2+2kπ,k∈ZF(x,y)=ysinx-cos(x-y)=0dy/dx=-(&
就是简单的复合函数求导问题嘛.1.y'=[1/cos(10+2x)]*[-sin(10+2x)]*2=[-2sin(10+2x)]/cos(10+2x)2.y'=[1/cos(3+x²)]*
COS(X+Y)COS(X-Y)=(COSX*COSY-SINX*SINY)(COSX*COSY+SINX*SINY)=(COSX*COSY)^2-(SINX*SINY)^2=COS^2X(1-SIN
对两边求导:[-sin(x+y)](1+dy/dx)+dy/dx=0-sin(x+y)-[sin(x+y)]dy/dx+dy/dx=0dy/dx=[sin(x+y)]/[1-sin(x+y)]
f(x,y)=e^(x+y)+cos(xy)=0 //: 利用隐函数存在定理:f 'x(x,y)=e^
B对方程x+cos(x+y)=0两边取微分,得dx-sin(x+y)d(x+y)=0即dx-sin(x+y)dx+sin(x+y)dy=0,整理得[1-sin(x+y)]dx=-sin(x+y0dy从
这个是对隐函数的求导.隐函数求导时,遇到因变量时,除和自变量一样外,还要再乘以因变量的一阶导数.因此y=y(x)由方程cos(x)+y=1确定时,两端对x求导就得-sinx+y'=0y'=sinx如果
x^2+y^2+z^2=cos^2φcoc^2Θ+cos^2φsin^2Θ+sin^2φ=1.F=x^2+y^2+z^2Fx=2xFz=2zz对x的偏导数=一Fx/Fz=一x/z.
z=y*cos(x+y)对x求偏导得y*(-sin(x+y))=-y*sin(x+y)对y求偏导得cos(x+y)+y*(-sin(x+y))=cos(x+y)-y*sin(x+y)所以dz=-y*s
令y/x=a,则a=sinθ/(cosθ-2),a^2(a的平方的意思)=sinθ^2/(cosθ-2)^2=(1-cosθ^2)/(cosθ^2-4cosθ+4),两边同时乘以分母,得a^2*(co
dy/dx=-2cosxsinx-5x的4次方所以dy=(-sin2x-5x的4次方)dx
y'=3[cos(1/x)]^2*[cos(1/x)]'..=3[cos(1/x)]^2*[-sin(1/x)]*(1/x)'..=3[cos(1/x)]^2*[-sin(1/x)]*(-1/x^2)
dy=6x*[-sin(1+3x²)]dx/[cos(1+3x²)]=-6xsin(1+3x²)dx/[cos(1+3x²)]再问:后面要加dx
1.两边求导得:y'=-sin(x-y)(1-y')解得y'=sin(x-y)/[sin(x-y)-1]2.y'=-e^-xy''=e^-xy'"=-e^-x3.y'"=(e^2x)'"(sinx)+
在方程ex+y+cos(xy)=0左右两边同时对x求导,得:ex+y(1+y′)-sin(xy)•(y+xy′)=0,化简求得:y′=dydx=ysin(xy)−ex+yex+y−xsin(xy).