设y=sin(x y),求dx分之dy
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 19:19:45
将y看成是关于x的函数即y=f(x)我们在求导的同时要记得y也要对x求导即dy/dx我们两边分别对x求导得e^x+e^y*dy/dx=cos(xy)*(y+x*dy/dx)移项e^x-y*cos(xy
再答: 再问: 再问:拜托了
1)x=0代入方程:1-e^y=0,得y(0)=0两边对X求导:e^x-y'e^y=cos(xy)(y+xy')y'=[e^x-ycos(xy)]/[xcos(xy)+e^y]代入x=0,y(0)=0
e^(x+y)-xy=1两边同时求导,e^(x+y)*(1+dy/dx)-y-xdy/dz=0(1)验证x=0,y=0在原曲线上.令x=0,y=0代入到(1)e^0*(1+dy/dz)-0-0*dy/
再答:隐函数高阶求导。再答:
e^(xy)+sin(xy)=y(y+xy')e^(xy)+(y+xy')cos(xy)=y'y'=(ye^(xy)+ycos(xy))/(1-xe^(xy)-xcos(xy))
这个题目要利用隐函数的求导法则.则sin(x^2+y)=xy(两边同时求导,还要结合复合函数的求导法则)cos(x^2+y)*(2x+y′)=y+xy′2xcos(x^2+y)-y=xy′-y′cos
z=arctan(x*e^x)z'={1/[1+(x*e^x)^2]}*(x*e^x)'(x*e^x)'=x'*e^x+x*(e^x)'=e^x+x*e^x=(x+1)*e^x所以dz/dx=(x+1
cos(x+y)(1+y')=y+xy'dy/dx=y'=[y-cos(x+y)]/[cos(x+y)-x]
y=sin(xy)dy/dx=cos(xy)*y=ycos(xy)d²y/dx²=-ysin(xy)*y=-y²sin(xy)
三种方法1式中同时对x求导-(y+xy‘)cosxy+2yy'=0解出y’2式中同时取微分d{sin(xy)+y^2-e^2}=dsin(xy)+dy^2-de^2=-cosxydxy+2ydy=-c
等式两边对x求导:cos(xy)*(y+x*y')-(2x*2y+x^2*2*y'=0解出y'即为所求
你好!两边对x求导:e^(xy)*(y+xy')-y^2=y'cosy解得y'=(y^2-ye^(xy))/(xe^(xy)-cosy)
y+xy'-cos(πy²)2πyy'=0y=[2πycos(πy²)-x]y'y'=y/[2πycos(πy²)-x]即:dy/dx=y/[2πycos(πy²
∵siny+e^x-xy^2=0,∴(dy/dx)cosy+e^x-[y^2+2xy(dy/dx)]=0,∴(cosy-2xy)(dy/dx)=y^2-e^x,∴dy/dx=(y^2-e^x)/(co
x/[sec(xy)-y]dx/dy.
(cos(x+y)-y)\(x-cos(x+y))
dy/dx=-fx/fy,你自己可以算吧