设y=sinx x 求y
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 18:35:31
y=ln(1+x)y′=1/(1+x)y′′=-1/(1+x)²y′′′=(-1)(-2)[1/(1+x)³].y^n=(-1)(-2)...(-n+1)[1/(1+x)^n]
y'=(lnlnx)'/lnlnx=(lnx)'/lnxlnlnx=1/xlnxlnlnx
y'=-sinx+3(lnx)^2/x
(1/cosx)*(-sinx)=-tanx
y=sinx²+sin²x∴y'=cos(x²)*(x²)'+2sinx*(sinx)'=2x*cos(x²)+2sinxcosx=2x*cos(x&
y'=cosx/x^2-2sinx/x^3=(xcosx-2sinx)/x^3.
=(secX+tanX)'/(secX+tanX)=(secxtanx+sec²x)/(secX+tanX)=secx(tanx+secx)/(secX+tanX)=secx
两种方法:1.求ln1/x的导数时,结果是1/(1/x)=x,因为是复合函数,此时还要乘以1/x的导数,即-1/x^2,最后结果是-1/x,ln2是常数,导数是0所以y'=-1/x;2.如果你上面的方
你提供的公式是不对的,如果是复合函数求导,那么应该是y'=y'(u)*u'(x)y'=(cosx)'+(ln³x)'=-sinx+3(ln²x)/x其中求(ln³x)'时
隐函数求导问题把有y看成x函数两端求导y'+e^y+xe^y*y'=0解出y'=-(e^y)/(1+x*e^y)OK?
x/y=ln(y/x)x(-1/y^2)y'+1/y=x/y(-y/x^2+y'/x)(1/y+x/y^2)y'=1/y+1/x[(y+x)/y^2]y'=(x+y)/xyy'=y/x
求导得:y′=xcosx−sinxx2,∴切线方程的斜率k=y′x=π=-1π,则切线方程为y=-1π(x-π),即y=-1πx+1.故答案为:y=−xπ+1
y=ln(x^2+2)是复合函数所以y'=[ln(x^2+2)]'[x^2+2]'=[1/(x^2+2)][2x]=2x/(x^2+2)
两边同时求导,y'=e^y+xe^y.y',y'=e^y/(1-xe^y),所以我挺你,是答案错了再问:不对,我刚刚发现把原题x用y表示出来再代进去就可以得到答案了,你能告诉我为什么要这样做吗?再答:
y'=2xarctanx+1y''=2arctanx+2x/(1+x^2)y''/x=1=π/2+1
要过程,看图
两边取自然对数,得lny=x*ln(lnx),两边同时对x求导,得(1/y)y'=ln(lnx)+x(1/lnx)*(1/x)整理得y'=y[ln(lnx)+(1/lnx)]即y'=[(lnx)^x]
两边对x求导得y'=e^y+xe^y*y'y'=e^y/(1-xe^y)dy=e^y/(1-xe^y)dx再问:好快....后面的都懂....不过可以说一下为什么两边对x求导后不是e^y+xe^y么.
∵y=sinxx∴y'=x(sinx)′−x′sinxx2=xcosx−sinxx2故答案为:xcosx−sinxx2
有公式y'=sec²x或者y=sinx/cosxy'=[(sinx)'cosx-sinx(cosx)']/cos²x=(cos²x+sin²x)/cos&sup