设z=e x-2y,x=cost,y=sint
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 18:11:27
因为:X+Y+Z=0得:Z+Y=-X------(1)X+Y=-Z------------(2)Z+Y=-X------------(3)X^3+X^2Z-XYZ+Y^2Z+Y^3=X^3+XZ(X+
z=x/ln(y/2)z′(x)=1/ln(y/2)z′(y)=-x/ln(y/2)^2*(1/(y/2))*1/2=-2x/(y*ln(y/2)^2)
1、对X求导(导数符号无,用“£”代替)两边对x求导有:2x2z£z/£x=-ycos(z/x)/x^2*£z/£x:化简得:£z/£x=-2x/[2zycos(z/x)/x^2]:2、对y求导两边求
∵dudx=∂f∂x+∂f∂y•dydx+∂f∂z•dzdx…(1)由exy-xy=2,两边对x求导得:exy(y+xdydx)-(y+xdydx)=0解得:dydx=-yx.又由ex=∫x-z0si
由柯西不等式(a^2+b^2+c^2)(x^2+y^2+z^2)>=(ax+by+cz)^2,得((1/√2)^2+(1/√3)^2+1)(2x^2+3y^2+z^2)>=(x+y+z)^22x^2+
z=3y/2把:z=3y/2代入x+y+z=3y得:x+y+3y/2=3y整理后得:x=y/2所以:x/(x+y+z)=(y/2)/(y/2+y+3y/2)=1/6不好意思上次算的时候没注意少了y除2
两边对x求导1-a*δz/δx=f'(y-bz)*(-bδz/δx)整理得:[a-bf'(y-bz)]δz/δx=-1两边对y求导-a*δz/δy=f'(y-bz)*(1-bδz/δy)整理得:[-a
两端对x求偏导得:-ye^(-xy)-2(z/x)+(z/x)e^z=0,所以,z/x=ye^(-xy)/(e^z-2)两端对y求偏导得:-xe^(-xy)-2(z/y)+(z/y)e^z=0,所以,
ə是偏微分符号əz、əx表示偏微分,əz/əx表示函数z对x的偏导数əz/əx=2xe^(x+y)+x^2e^(x+y)=(x^2
∂z/∂x=(1/(x²+y))(2x)=2x/(x²+y)∂²f/∂x∂y=∂[∂z
eZ/eX=2x*[ef(x*x-y*y)/ex],eZ/eY=-2x*[ef(x*x-y*y)/ey],
解dy/dx=(1-sint)'/(t²+cost)'=(-cost)/(2t-sint)
建议将球体移到原点位置,这样好做些.用柱面坐标也可以,但基本过程复杂不太推荐,不过,随你喜欢~第一个积分的化简步骤直接跳过了,你不明白的话可以追问,
z=lnx^z+lny^x=zlnx+xlnyz=xlny/(1-lnx)先关于x求偏导,把y看做常数,再对y求偏导,把x看做常数dz=0dx+x/y(1-lnx)dy(此处省略了一些计算过程,)dz
两边取e的指数:e^(x+y²+z)=(x+y²+z)/2对x求导:[e^(x+y²+z)]*(1+ðz/ðx)=(1+ðz/ðx
应该是∂z/∂x吧!令u=x+y^2+z=>du/dx=1+dz/dxu=lnu^(1/2)=1/2*lnudu/dx=1/2*1/u*du/dx=>du/dx=u/(1/2+
x+2y+z=e^(x-y-z)两边对x求偏导注意到z=z(x,y)1+z'=e^(x-y-z)*(1-z')...(1)再对x求偏导z"=e^(x-y-z)(1-z')^2-z"e^(x-y-z).
(线性规划)由条件当X=Y=3时有最大值Z=6即得K=3再由X+2Y>=0很容易求得Z最小值-3