设z=F(bx-ay)其中F可微,则

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 20:48:40
设z=F(bx-ay)其中F可微,则
设:z=f(x+y+z,yz),其中函数f可微,求∂z/∂x,∂x/∂z

经济数学团队帮你解答,有不清楚请追问.请及时评价.再问:大哥==看清楚提干啊再答:嗯?这就是结果没错啊.f是已知函数,所以其对于第一项与第二项元素的偏导也是已知的.再答:抱歉啊..看错题了...

设z(x,y)是方程F(x-y,y-z,z-x)=0所确定,其中F为可微函数,则δz/δx+δz/δy=?

令u=x-y,v=y-z,w=z-x,则F(u,v,w)=0,方程两边对x求偏导,其中z看做x,y的函数,则ðF/ðu*ðu/ðx+ðF/ð

设Z=y/f(x^2-y^2),其中f(u)为可导函数,验证1/X乘δz/δx + 1/y乘δz/δy =z/y^2

这是复合函数的导函数的利用δz/δx=2xyf'/f²δz/δy=[f+yf'(-2y)]/f²=(f-2y²f')/f²1/x×δz/δx+1/y×δz/δy

设x-az=f(y-bz),其中函数f(u)可微,验证:a(δz/δx)+b(δz/δy)=1

两边对x求导1-a*δz/δx=f'(y-bz)*(-bδz/δx)整理得:[a-bf'(y-bz)]δz/δx=-1两边对y求导-a*δz/δy=f'(y-bz)*(1-bδz/δy)整理得:[-a

高数下册,全微分.设z=y/f(x²-y²),其中f可微,求Z′x/X+Z′y/Y .

z'x=-2xyf'(x²-y²)/f^2(x²-y²)z'y=[f(x²-y²)+2y^2f'(x²-y²)]/f^2

设函数f可微,z=f(ye^x,x/(y^2)) 求z/x,z/y

两边对x求导1-a*δz/δx=f'(y-bz)*(-bδz/δx)整理得:[a-bf'(y-bz)]δz/δx=-1两边对y求导-a*δz/δy=f'(y-bz)*(1-bδz/δy)整理得:[-a

设u=f(z),而z是由方程z=x+yg(z)确定的函数,其中f,g均为可微函数.证明du/dy=g(z)du/dx.

z=x+yg(z)=>dz/dx=1+yg'(z)dz/dx=>dz/dx=1/(1-yg'(z))dz/dy=g(z)+yg'(z)dz/dy=>dz/dy=g(z)/(1-yg'(z))du/dy

设z=(x,y)由方程z=f(x,y,z)所确定,其中f为可微的三元函数,求dz

z=f(x,y,z),两边求微分(f'x表示函数f对变量x的偏导数,y、z同义)dz=f'x*dx+f'y*dy+f'z*dz(1-f'z)dz=f'x*dx+f'y*dy∴dz=(f'x*dx+f'

设Z=f(x,x/y),f有二阶连续偏导数,求az/ax,az/ay,az/axay

az/ax=f'1+f'2*1/y=f'1+1/y*f'2az/ay=f'2(-x/y^2)=-x/y^2f'2az/axay=f''12*(-x/y^2)-1/y^2f'2+1/yf''22(-x/

设Z=f(y/x,y),f有二阶连续偏导数,求az/ax,az/ay,az/axay,

令u=y/xv=yz=f(u,v)az/ax=af/au*au/ax+af/av*av/ax=af/au*(-y/x^2)az/ay=af/au*au/ay+af/av*av/ay=af/au*(1/

设函数f(x)=ax^2+bx+c,其中a∈N*,b∈N,c∈Z

函数f(x)=ax^2+bx+c,它的对称轴是-b/2a,若b>2a,那么对称轴在-1的左边a是正数,所以开口向上在z∈[-1,+1]是单调递增的所以f(-1)=-4,f(1)=2求得b=3,a=1,

设函数z=1/xf(xy)+yg(x+y),其中f,g二次可导,求偏导数 就是求a^2z/axay

传了张图片,不怎么清楚,凑合一下思路就是按照多元复合函数求导来一步一步求解.有问题再追问.先打这么多了. 答案是a^2z/axay=y*f ''(xy)+g'

高数,1设Z=cos(xy2)+3x/x2+y2,计算δz/δy2、设Z=f(x2-y2,exy),其中f(u,v)为可

1设Z=cos(xy2)+3x/x2+y2,计算δz/δyδz/δy=-2xy*sin(xy2)-(3x*2y)/(x2+y2)22、设Z=f(x2-y2,exy),其中f(u,v)为可微函数,求dz

设z=f(x/y)且f为可微函数,则dz=

dz=f'x(x/y)dx+f'y(x/y)dy=[f'(x/y)/y]dx+f'(x/y)(-x/y²)dy

设由方程x-z-yf(z)=0所确定的隐函数g(x,y),其中f可导,求dz/dx dz/dy

经济数学团队帮你解答,有不清楚请追问.请及时评价.

设函数Z=(y-1)/f(x^2-y^2),其中f可导,试求z在(1,1)的导数dz

你好!“数学之美”团员448755083为你解答!首先dz不叫导数,对于多元函数来讲,应该叫全微分.∂f/∂x=f'·2x∂f/∂y=-f'·2y

设z=y/(f(x^2-y^2)),其中f为可导函数,验证

∂z/∂x=-((∂f/∂x)*y*2x)/f^2∂z/∂y=1/f+2y2*(∂f/∂y)/f^21/

设f(cx-ay,cy-bz)=0,其中f有连续偏导数,证明a*(偏z比偏x)+b*(偏z比偏y)=c

将f(cx-ay,cy-bz)看成三元函数F(x,y,z)两边分别对x,y,z求偏导数,得到偏z比偏x和偏z比偏y,带入即可