设z=sin(x^2 y^2 2x)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 00:56:56
设z=sin(x^2 y^2 2x)
三角函数最值问题已知x,y,z为实数,求:f(x,y,z)=[sin(x-y)]^2+[sin(y-z)]^2+[sin

sin^2(x-y)+sin^2(y-z)+sin^2(z-x)=[1-cos2(x-y)+1-cos2(y-z)+1-cos2(z-x)]/2=3/2-[(cos2xcos2y+sin2xsin2y

设X+Y+Z=0求X^3+X^2Z-XYZ+Y^2Z+Y^3的值

因为:X+Y+Z=0得:Z+Y=-X------(1)X+Y=-Z------------(2)Z+Y=-X------------(3)X^3+X^2Z-XYZ+Y^2Z+Y^3=X^3+XZ(X+

设x+y+z=11求函数u=2x*x+3y*y+z*z的最小值

由柯西不等式(a^2+b^2+c^2)(x^2+y^2+z^2)>=(ax+by+cz)^2,得((1/√2)^2+(1/√3)^2+1)(2x^2+3y^2+z^2)>=(x+y+z)^22x^2+

16.设x+y+z=3y=2z ,求x/(x+y+z)的值5.7

z=3y/2把:z=3y/2代入x+y+z=3y得:x+y+3y/2=3y整理后得:x=y/2所以:x/(x+y+z)=(y/2)/(y/2+y+3y/2)=1/6不好意思上次算的时候没注意少了y除2

设二元函数z=sin(x-y),求αz/αy,αy/αz,dz

∂z/∂x=cos(x-y)∂z/∂y=-cos(x-y)dz=∂z/∂x*dx+∂z/∂y*dy=co

.设z=z(x,y)由方程sin z=xyz所确定的隐函数,求dz.

先对x求偏导数得z'(x)cosz=yz+z'(x)y所以z'(x)=yz/(cosz-y)同理对y求偏导数得z'(y)=xz/(cosz-x)所以dz=yz/(cosz-y)dx+xz/(cosz-

证明sinx+siny+sinz-sin(x+y+z)=4sin((x+y)/2)sin((x+y)/2)sin((x+

sinx+siny+sinz-sin(x+y+z)=4sin[(x+y)/2]sin[(x+z)/2]sin[(y+z)/2]sinx+siny+sinz-sin(x+y+z)=2sin[(x+y)/

u=x(z+y) z=sin(x+y) 求二阶偏导数σ2u/σxσy

σu/σx=(z+y)+x(σz/σx+0)=z+y+xcos(x+y)σ2u/σxσy=σz/σy+1-xsin(x+y)=cos(x+y)+1-xsin(x+y)

设Ω={(x,y,z)|x^2+y^2+z^2

建议将球体移到原点位置,这样好做些.用柱面坐标也可以,但基本过程复杂不太推荐,不过,随你喜欢~第一个积分的化简步骤直接跳过了,你不明白的话可以追问,

设函数 f(x)=sin(2x+y),(-π

f(x)=sin2(x+y/2)由于sin2x对称轴为π/4+kπ/2;故x+y/2=π/4+kπ/2x=π/4+kπ/2-y/2;将x=x=π/8代入,得y=π/4+kπ,根据y的范围可知:y=-3

设z=ln(x^z×y^x),求dz

z=lnx^z+lny^x=zlnx+xlnyz=xlny/(1-lnx)先关于x求偏导,把y看做常数,再对y求偏导,把x看做常数dz=0dx+x/y(1-lnx)dy(此处省略了一些计算过程,)dz

设函数Z=sin(x^2+y^2),则全微分dz=?

dz=Z'xdx+Z'ydy=2xcos(x^2+y^2)dx+2ycos(x^2+y^2)dy

设函数Z=sin(x^2 y^2),则全微分dz=?

再问:啊不好意思搞错了。。是z=e^(x^2+y^2),求dz,谢谢你帮我解答一下吧。。再答:

设函数z=z(x,y)由方程2sin(x+2y-3z)=x+2y-3z所确定,求证z对x的偏导加上z对y的偏导等于1

公式输入了好半天,希望可以看懂哈!另外,可以不用辅助函数,直接利用已知等式计算求导.

设K属于Z,函数y=sin(π/4+x/2)sin(π/4-x/2)的单调递增区间

y=sin(π/4+x/2)sin(π/4-x/2)=sin(π/4+x/2)sin[π/2-(π/4+x/2)]=sin(π/4+x/2)cos(π/4+x/2)=1/2sin(π/2+x)=1/2

设函数z=sin(x^2y^2)+3x-5y^2+1,求dz

z=sin(x²y²)+3x-5y²+1所以δz/δx=cos(x²y²)*2xy²+3δz/δy=cos(x²y²)*

设k∈Z,函数y=sin(π/4+x/2) sin(π/4-x/2)的单调递增区间为

y=sin(π/4+x/2)sin(π/4-x/2)=-1/2(cosπ/2-cosx)=1/2(cosx)递增区间是x∈[2kπ+π,2(k+1)π]k∈Z

设Z=X+Y,其中X,Y满足X+2Y>=0,X-Y

(线性规划)由条件当X=Y=3时有最大值Z=6即得K=3再由X+2Y>=0很容易求得Z最小值-3