设z=x2cos2y,求

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 07:58:15
设z=x2cos2y,求
设复数z满足1-z/1+z=-1+i/3+i(i为虚数单位),求复数z?

(1-z)/(1+z)=(-1+i)/(3+i)(1-z)(3+i)=(-1+i)(1+z)3+i-3z-zi=-1-z+i+zi2z+2zi=42z(1+i)=4z=2/(1+i)=2(1-i)/(

设复数z满足4z+2Z把=3√3+i,求复数z的模

设Z=x+yi,则原式可表示为:4(x+yi)+2(x-yi)=3√3+i6x+2yi=3√3+i实部等于实部,虚部等于虚部所以:x=(√3)/2y=1/2所以:Z=(√3)/2+1/2i所以:|Z|

设z∈C,Z是z的共轭复数,且z(2+i)为纯虚数,z*Z=20,求复数z

教你五颗星的方法.设z=a+bi,Z=a-bi,(a+bi)*(2+i)=2a-b+(a+2b)i.因为是纯虚数,所以2a-b=0,所以2a=b,所以z=a+2ai又因为z*Z=20.且Z=a-2ai

设复数z满足z+|z拔|=2-i,求|z|

解答过程如图 后面=√a*a+b*b=5/4

1.设z属于c,且z的模=1,z的平方-z+1=1,求z

设Z=a+bi(a,b属于R)z的模=1所以a的平方+b的平方=1z的平方-z=0所以a的平方-b的平方-a+(2ab-b)i=0{a的平方-b的平方=0{2ab-b=0{a的平方+b的平方=1三个一

设复数z满足z 1/z=1/2,求z

设z=a+bi,1/(a+bi)=(a-bi)/(a^2+b^2)=1/2,显然b=0,a/(a^2+b^2)=1/2;a=2.得z=2

设复数z满足关系式z+|z的共轭|=2+i,求z

设z=a+bi所以z+z+|z的共轭|=a+根号(a^2+b^2)+bi=2+i所以b=1所以a+根号下(a^2+1)=2所以a=3/4所以z=3/4+i

设复数Z满足|z|=1,且(3+4i)Z是纯虚数,求Z

(3+4i)*(3-4i)i=25i(3-4i)i=3i+4|(3i+4)/5|=1z=(3i+4)/5

设Z=f(xz,z/y)确定Z为x,y的函数求dz

f对第1个变量的偏导函数记作f1,第2个变量的偏导函数记作f2,dz=f1*d(xz)+f2*d(z/y)...[注:写完整的话是f1(xz,z/y),f2也如此]=f1*(xdz+zdx)+f2*(

设复数Z满足|z-2-3i|=1,求|z|的最大值

1=|z-2-3i|=|z-(2+3i)|≥|z|-|2+3i|,所以|z|≤1+|2+3i|=1+√13.

设z=ln(x^z×y^x),求dz

z=lnx^z+lny^x=zlnx+xlnyz=xlny/(1-lnx)先关于x求偏导,把y看做常数,再对y求偏导,把x看做常数dz=0dx+x/y(1-lnx)dy(此处省略了一些计算过程,)dz

设复数z满足2|z-3-3i|-|z|=0,求|z|的最大值和最小值

2|z-3-3i|=|z|几何含义就是复数z在复平面内对应的动点A(a,b)同定点B(0,0)之间距离,等于它到定点C(3,3)距离的2倍.即|AC|=|AB|/2|BC|=3根号2因为|AC|+|A

设复数满足|z+i|+|z-i|=2,求|z-1-i|最小值

坐标系中,一个点到(0,1)和(0,-1)的距离和为2,这个点在y轴两个点之间设点为(0,m)-1≤m≤1|z-1-i|=|mi-1-i|=根号[1+(m-1)^2]m=1时,原式有最小值根号1=1

设z为复数,且z和z+1的模长都=1,求z-1的模长

设Z=a+bia×a+b×b=1①(a+1)×(a+1)+b×b=1②连立①②得:a=-1/2,b=-(根号3)/2则Z-1=-3/2-(根号3)/2Z-1的模=根号3

设z=arctany/x,求dz?

是(arctany)/x还是arctan(y/x)?如果是z=(arctany)/x,则∂z/∂x=-(arctany)/x²∂z/∂y=1/

设z为纯虚数,且/z-1/=/-1+i/求复数z

设z=bi|z-1|=√2|bi-1|=√2√(b^2+1)=√2b^2+1=2b^2=1b=正负1故z=正负i

设z的共轭复数是Z,若z+Z=4,z*Z=8,求Z/z

设z=a+bi,Z=a-bi∵z+Z=2a=4∴a=2∵z*Z=a^2+b^2=8∴b^2=4,b=±2①当z=2+2i,Z=2-2i时Z/z=(1-i)/(1+i)=-i②当z=2-2i,Z=2+2

设复数z=a+i,绝对值z等于根号2,求复数z,和z+1分之z格玛

a=1;z=1+iz+1/z=1+1/z=1+1/1-z=1+z/2+1=3/2+1/2z再问:可以明白一点不〜谢了!