设z=x2y2,则dz=
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 08:14:40
∂z/∂x=2xy∂z/∂u=x²所以dz=2xydx+x²dy
dz=2x+y就是对z求x的导数吧
z'x=2e^(2x+y)z'y=e^(2x+y)所以dz=2e^(2x+y)dx+e^(2x+y)dy
再问:非常感谢,还要问大侠一道题面目。曲线y=x³+3x的拐点坐标为???再答:y'=3x²+3y''=3x令y"=0,得x=3当x=3时,y=36所以拐点坐标(3,36)
dz=2xdy+2ydx
∂z/∂x=2x/(1+x^2+y^2)∂z/∂y=2y/(1+x^2+y^2)dz=∂z/∂xdx+∂z/W
dz=f'x(x/y)dx+f'y(x/y)dy=[f'(x/y)/y]dx+f'(x/y)(-x/y²)dy
z=lnx^z+lny^x=zlnx+xlnyz=xlny/(1-lnx)先关于x求偏导,把y看做常数,再对y求偏导,把x看做常数dz=0dx+x/y(1-lnx)dy(此处省略了一些计算过程,)dz
http://hi.baidu.com/fjzntlb/album/item/ef8139f61e7f7842730eec56.html#
zx=1/(1+(x/y)²)*1/y=y/(x²+y²)zy=1/(1+(x/y)²)*(-x/y²)=-x/(x²+y²)所以
dz=[yIn(xy)+y]dx+[xIn(xy)+x]dy分开求导
第一题是y=sinx²+2x吗解y'=dy/dx=(sinx²+2x)'=(sinx²)'+(2x)'=2xcosx²+2∴dy=(2xcosx²+2
f(x)=z=x+y/x-ydz=fxdx+fydy=[[(x-y)-(x+y)]/(x-y)^2]dx+[[(x-y)+(x+y)]/(x-y)^2]dy=-2y/(x-y)^2dx+2x/(x-y
dz=Z'xdx+Z'ydy=2xcos(x^2+y^2)dx+2ycos(x^2+y^2)dy
是(arctany)/x还是arctan(y/x)?如果是z=(arctany)/x,则∂z/∂x=-(arctany)/x²∂z/∂y=1/
由z=exy得zx=yexy,zy=xexy∴dz=yexydx+xexydy
1/[z(z^2-1)]=z/(z^2-1)-1/z=1/2[1/(z-1)+1/(z+1)]-1/z剩下的就自己完成吧
u=x^2+y∂u/∂x=2x∂u/∂y=1du=(∂u/∂x)dx+(∂u/∂y)dy=2xdx+dy
z=x^2+2xy两边同时求导数,得到:dz=2xdx+2ydx+2xdy即:dz=2(x+y)dx+2xdy.
dz=dx/(x+y)+dy/(x+y)