设Ω由平面x y z=1与三个坐标面围成,则∫∫Ω∫(x y z)dv=
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 12:57:43
将z对x的偏导记为dz/dx,(不规范,请勿参照)(e^x)-xyz=0两边对x求导数(e^x)'-(xyz)'=0e^x-x'yz-xy(dz/dx)=0e^x-yz-xy(dz/dx)=0xy(d
设曲面上任意一点坐标(x0,y0,z0)满足x0*y0*z0=a^3该点处法向量=(y0*z0,x0*z0,x0*y0)切平面方程为:y0*z0*(x-x0)+x0*z0*(y-y0)+x0*y0*(
设曲面上任意一点坐标(x0,y0,z0)满足x0*y0*z0=1该点处法向量=(y0*z0,x0*z0,x0*y0)切平面方程为:y0*z0*(x-x0)+x0*z0*(y-y0)+x0*y0*(z-
再问:谢谢与三个坐标面围成的意思是所围图形在第一卦限对吧再答:是的,是一个顶面为z=x+y+1,底为z=0,周围为x=0,y=0和x+y=1的图形。
说明平面与坐标面的·节距是a=2,b=1,c=1易得底面三角形面积1/2×2×1=1高为1,所以易得所围成体积O-ABC为1×1×1/3=1/3
求由x=0y=0x+y=1围成的三棱柱的体积下底为z=0上底为z=x^2+y^2(圆锥)=∫(0,1)dx∫(0,1-x)dy∫(0,x^2+y^2)dz=∫(0,1)dx∫(0,1-x)[z](0,
图象如上∫(-1->0)∫(-2x-2 ->0)∫(0->2x+y+2)dxdydx=∫(-1->0)dx∫(-2x-2 ->0)dy∫(0->
在这个式的基础上乘以12得6x+4y+3z=12用这个做应该容易很多再问:有木有详细点的过程啊再答:对不起这类题我有10多年没碰过了。
见图.\x07对不起!在计算中出现失误!再发一张!()!再问:可答案是e/2-1再答:我不是对了嘛
∫∫∫e²dv=e²∫∫∫1dv被积函数为1,积分结果为立体区域的体积分,该区域体积为:(1/6)*1*1*1=1/6=e²/6希望可以帮到你,如果解决了问题,请点下面的
1e^z=xyze^zz'x=yz+xyz'xz'x=yz/(xy-e^z)=yz/(xy-xyz)=z/(x-xz)类似z'y=z/(y-yz)dz=[z/(x-xz)]dx+[z/(y-yz)]d
曲面xyz=1上点到原点距离L=x²+y²+z²=(1/xy)+(1/yz)+(1/xz)≥3√(1/xyz)²=3,当且仅当x=y=z=1时取得最小值.切平面
yz坐标平面与x轴垂直xy坐标平面与z轴垂直点P(1,3,5)关于原点与中心对称的点的坐标为(-1,-3,-5)
∫∫∫1dxdydz=∫[0→a]dx∫[0→b-bx/a]dy∫[0→c-x/a-y/b]1dz=∫[0→a]dx∫[0→b-bx/a](c-cx/a-cy/b)dy=c∫[0→a](y-xy/a-
曲面xyz=a³在(x0,y0,z0)的法方向是{y0z0,z0x0,x0y0}.切平面是:y0z0(x-x0)+z0x0(y-y0)+x0y0(z-z0)=0.它在三个坐标轴上的截距分别是
它的体积=∫dx∫(1-x-y)dy=∫{[(1-x)y-y²/2]│}dx=∫[(1-x)²/2]dx=[(1/2)(-1/3)(1-x)³]│=1/6.
xoy平面的法向量为[0,0,1],在三维空间中平面的方程是A*x+B*y+C*z+D=0(A^2+B^2+C^2不等于零)是平面直线方程A*x+B*Y+C=0(A^2+B^2不等于零)的推广,其法向
设切点为(x0,y0,z0)F(x,y,z)=xyz-1Fx=yz,Fy=xz,Fz=xyn=(y0z0,x0z0,x0y0)因为切平面和平面x+y+z=5平行所以y0z0/1=x0z0/1=x0y0
区域D的面积为:SD=∫e20dx∫1x0dy=∫e211xdx=lnx|e21=2,所以(X,Y)的联合概率密度为:f(x,y)=12 (x,y)∈D0