设△abc的内角abc所对的边分别为abc.已知b² c²=a² 根号3bc
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 07:35:36
(2a+c)BC*BA+c*CA*CB=0(2a+c)accosB+cabcosC=0(2a+c)cosB+bcosC=0(2a+c)(a^2+c^2-b^2)/(2ac)+b(a^2+b^2-c^2
面积=根号5.tanB=2.
因为cosBcosC=-b2a+c所以cosBcosC=-sinB2sinA+sinC,即2sinAcosB+sinCcosB+cosCsinB=0所以2sinAcosB+sin(C+B)=0,2si
(I)过C作CD⊥AB于D,则由CD=bsinA=4,BD=acosB=3∴在Rt△BCD中,a=BC=BD2+CD2=5(II)由面积公式得S=12×AB×CD=12×AB×4=10得AB=5又ac
1.sin(A-30)=cosA显然90>A>30若A
S△ABC=1/2bcsinA所以1/2bcsinA=(a^2-(b-C)^2)sinA=2(a^2-b^2-c^2+2bc)/bccosA=(b^2+c^2-a^2)/2bc1-cosA=(2bc-
/sinB=c/sinCsinBsinB=sin2C=2sinCcosC给你个提示!
∵acosA=bcosB=ccosC①,且由正弦定理得:asinA=bsinB=csinC②,∴①÷②得:tanA=tanB=tanC,又A,B,C都为三角形的内角,∴A=B=C=60°,又acosA
tanB=sinB/cosB=asinB/acosB=4/3sinB=4/(√(4²+3²))=4/5cosB=3/(√(4²+3²))=3/5asinB=4a
(I)过C作CD⊥AB于D,则由CD=bsinA=4,BD=acosB=3,∴在Rt△BCD中,a=BC=BD2+CD2 =5,(II)由面积公式得S=12×AB×CD=12×AB×4=10
cos(A-C)+cosB=cos(A-C)-cos(A+C)=cosAcosC+sinAsinC-cosAcosC+sinAsinC=2sinAsinC=3/2sinAsinC=3/4根据正弦定理,
因为3acosc=4csinA 所以3sinAcosC=4sinCsinA 3cosC=4sinC cosC=4/5由S=10,b=4csinA=5因为3acosC=4csinAa=25
1.由正弦定理得sinAcosB-sinBcosA=sinB+sinCsinAcosB-sinBcosA=sinB+sin(A+B)sinAcosB-sinBcosA=sinB+sinAcosB+co
利用余弦定理代入acosB-bcosA=3/5化简后得a^2-b^2=(3/5)c(1)tgActgB=sinAcosB/(cosAsinB)利用正弦定理和余弦定理代进去,最后化简(把a^2-b^2=
(1)sin(A-派/6)=cosAsinAcos30度-cosAsin30度=cosA两边同时除以cosA,得:tanAcos30度-sin30度=1A=60度(具体计算自己算)(2)cosA=(b
再问:哪里是第二问啊--再答:周长下面的是第2问用到两角差
(1)∵△ABC中,cosB=45,∴sinB=1-cos2B=35,由正弦定理知asinA=bsinB,∴a=bsinB•sinA=235×12=53.(2)由S△ABC=12acsinB=310a
由a=2bsinA得:b=a/(2sinA)由正弦定理得:S三角形ABC=(1/2)*bcsinA所以:(1/2)*(a/(2sinA))*2*sinA=√3,得:a=2√3由正弦定理得:a/sinA
继续化简f(x)=1-1/2(2cos^2x-1)-1/2+(根号3/2)sin2x+(3/2)=1/2+3/2-1/2cos2x+(根号3/2)sin2x=2-sin(π/6-2x)