设三阶方阵的特征值和特征向量,求方阵A
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 23:59:27
由于A为对称矩阵,故存在正交矩阵U使得U^TAU=diag{a1,a2,a3,a4}.其中a1,a2,a3,a4为A的特征值.又因为A的秩为1,故a1,a2,a3,a4中只有一个不为0,另外三个都为0
不是一一对应若α是A的属于特征值λ的特征向量,则kα(k≠0)也是A的属于特征值λ的特征向量特征向量只能属于一个特征值而特征值有无穷多特征向量
我们课本最常见的就是三阶,而且考试也以三阶为主,我就给你用三阶的举例说明吧三阶方阵A求特征向量,特征值的方法:1,先求特征多项式|λE-A|=0解出特征值λ1,λ2,λ3特征值一定有三个(因为三阶,或
lp87562514,首先你要明白,只有方阵才有特殊值.设矩阵为[A],求|λE-A|=0的所有λ,这些λ就为矩阵A的特征值,其中有的是重的,有几次就叫几重特征值.然后再解(λE-A)x=0,得到的这
显然(A),(B),(C)正确,(D)错误,你哪个选项不理解
这其实是我们常做的矩阵对角化的逆运算,P-1AP=B,我们平常已知A,求P和B,现在已知P和B,求A,A=PBP-1,其中B是特征值组成的对角阵,P的列向量就是特征值对应的特征向量,要特别注意这里的对
|A-λE|=1-λ11111-λ-1-11-11-λ-11-1-11-λri+r1,i=2,3,41-λ1112-λ2-λ002-λ02-λ02-λ002-λc1-c2-c3-c4-2-λ11102
第一二个用韦达定理证明第三个用代数基本性质证明再问:我也知道用韦达定理,关键是不明白第三个式子如何展开得到的(如果是用行列式的定义,那么是如何展开的呢?),恳请您再说的详细点,谢了!!或者给我点资料也
第三题r(α1,α2,α3,α4)=4极大无关向量组α1,α2,α3,α4第四题由Aα=λα可得|Aα-λα|=0∴|A-λα|=0∴λ³-4λ²+λ-2=0λ=3.8751297
设a,用-2-a,2-a,3-a,分别代替原方阵中-2,2,3,令新方阵的行列式=0,即A-aE取行列式令为零.解得a=-1或2,即特征值为-1和2,分别把-1和2带入(A-aE)x=0,解出齐次线性
再问:谢谢您很感激噢
一般的矩阵没有这个性质只是属于不同的特征值的特征向量是线性无关的(而不是正交的)
1、解:矩阵M的特征值λ满足方程0==(λ+1)(λ-3)-()(-2)=λ2-2λ-8,解得,矩阵M的两个特征值λ1=4,λ2=-2,(1)设属于特征值λ1=4的特征向量为,则它满足方程(λ1+1)
|λE-A|=||λ.-4.-2||-4.λ.-8||-2.-8.λ-8|则|λE-A|=|0.-4-4λ.λ^2/2-4λ-2||0.λ+16.8-2λ||-2.-8..λ-8|令|λE-A|=0,
例如A\xi_1=\lambda_1\xi_1,A\xi_2=\lambda_2\xi_2,A\xi_3=\lambda_3\xi_3记P=(\xi_1\xi_2\xi_3),则A=Pdiag(\la
设A的特征值为a1,a2,...,an,对应的特征向量为p1,p2,...,pn,令P=(p1,p2,...,pn)则A=Pdiag(a1,a2,...,an)P^-1才看到你这题目
用数学软件算
A代表矩阵,A和每一个向量作用,Ax=入x.这不就出来后边的等式了么.不明白HI我
是的,只能你用初等行变换基础解系是看整个行最简矩阵的所有的例题当然都是用的同样的方法哦
λ1=5,λ2=λ3=-15的特征向量[1,1,1]^T-1的特征向量[1,-1,0]^T和[1,0,-1]^T