设三阶矩阵A分块为A=[α1,β,γ],B=[α2,β,γ],|A|=-2
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 03:57:10
楼上犯了想当然的错误.事实上应该是(-1)^{mn}ab,可以直接用Laplace定理,也可以把A逐列向左移.
没什么特别的意思,就是一个记号而已前面按行分块已经用过A_k了,按列分块的时候要换一个记号以避免重复
参考一下再问:有没有更简单的方法?我们好像没学到过那条推论啊。。。QAQ再答:行列式拉普拉斯展开式有没有学过?
学过Laplace展开定理没?或知道行列式A00B=|A||B|再问:没有学过拉普拉斯定理,我知道后面那个行列式。再答:都不知道?!先看懂这个:0 AB 0将A的第1列逐列与前一列
B^-1=1-2E^-1=E-251-200所以A=-250000100001
行列式可由Laplace展开定理,按第n+1,n+2,...,n+m行展开|D|=|A||B|(-1)^tt=n+1,n+2,...,n+m+1+2+...+m=mn+2(1+2+..+m)所以|D|
利用行列式的性质|ABBA|=|A+BBA+BA|=|A+BB0A-B|=|A+B||A-B|再根据矩阵可逆的充要条件是行列式不为0可知命题成立.
|A1,2A3,A2|=-|A1,A2,2A3|=-2|A1,A2,A3|=-2|A|=4.|A3-2A1,3A2,A1|c1+2c3=|A3,3A2,A1|=3|A3,A2,A1|=-3|A1,A2
两行交换一次行列式换号第m行做相邻交换到最后一行(做了n次),第m-1行做相邻交换换到倒数第二行(做了n次),……第一行做相邻交换到倒数第m行(做了n次)|C|=(-1)^mn|(BO,OA)|
如果A是分块对角矩阵,则分别对每个分块矩阵求逆就行了.如果分块矩阵不是分块对角矩阵,求逆则比较麻烦,一般按普通矩阵求逆就行了.但是矩阵的逆的存在是有前提的,矩阵的行列式必须不等于零.你问题中的矩阵的行
|A3-2A1,3A2,A1|第三列x2加到第一列得到|A3,3A2,A1|,第二列拿出一个3得到3|A3,A2,A1|,交换第一第三列最后得到-3|A1,A2,A3|=-3x(-2)=6
(1)|A1,-3A3,A2|=3*|A1,-A3,A2|=3*(-1)*|A1,A2,-A3|=3*(-1)*(-1)*|A1,A2,A3|=3*(-1)*(-1)*(-2)=-6(2)|A3-3A
由於3*3列矩阵,且|A|=1即此矩阵属于单位矩阵.|100|A=|010||001|把A按”列“分块为A=(A1,A2,A3)按照上图把第2列X(-2)减去第3列,抽-2出来,最后不变所以-2A2-
|C|=|2A||B|=2³×2×3=48
丨a3-2*a1,3*a2,a1丨=丨a3,3*a2,a1丨-丨2*a1,3*a2,a1丨=3*丨a3,a2,a1丨-2*丨a1,3*a2,a1丨=3*(-1)*丨a1,a2,a3丨-0=3*(-1)
B=(β,β1,β3)应该是B=(β,β1,β2)吧?
先将矩阵C上方的三行做行初等变换将左上角的3*4的矩阵其化为行最简型,整个矩阵记为M.再将所得矩阵M的左边4列做列初等变换,将M的左上角的3*4的矩阵其化为标准型,就得到了矩阵D.这通常是要求矩阵A的
PQ=A+aa^Ta+ba-a^TA*A+|A|a^T-a^TA*a+|A|b=A+aa^Ta+ba-|A|a^T+|A|a^T-a^TA*a+|A|b=A+aa^T(b+1)a0-a^TA*a+|A
如果知道Laplace展开定理,直接对前m行展开即可如果知道行列式乘积定理,可以做分解[AB;0C]=[IB;0,C]*[A0;0;I]对[IB;0,C]按第一列展开并归纳,对[A0;0;I]按最后一