设三阶矩阵a的特征值为0,1,2
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 04:15:53
z直接写了,A就是阶梯型矩阵了,主对角元素就是特征值了λ=1,2
1/(2λ),基本上特征值和矩阵是满足普通的函数对应关系.
行列式是-2,因为矩阵A和它的若尔当标准型的行列式一样.它的若尔当标准型行列式就是1*-1*2=-2
A的特征值不同,则A可对角化所以r(A)=2(非零特征值的个数)因为BA=0所以r(A)+r(B)再问:为什么BA=0r(A)+r(B)小于等于3??再答:这是个知识点.若Am*nBn*s=0,则r(
令P=110101111则P^-1AP=diag(1,2,3)所以A=Pdiag(1,2,3)P^-1
答案是-5,-1,7,用定义如图计算.经济数学团队帮你解答,请及时采纳.
|A|=2≠0可逆
|λE-A|=0根为1,2,-3则|A|≠0(因为λ=0不是上面方程的根)设B是A的逆矩阵|λE-A|=0等价于|λAB-A|=0等价于|λB-E|=0(因为A是行列式不等于0)等价于|(1/λ)E-
:所求的B的行列式=1×(-2)×3=-6.
|A|=2*1*1=2A*的特征值为(|A|/λ):2/2=1,2/1=2,2/1=2(A*)^2+I的特征值为(λ^2+1):2,5,5再问:为什么A*的特征值为(|A|/λ)?再答:
知识点:若a是A的特征值,则f(a)是f(A)的特征值.f(x)是多项式因为三阶矩阵A的三个特征值为-1,3,5所以A-3E的特征值为-1-3=-4,3-3=0,5-3=2.再问:做题突然发现这是盲点
对每个特征值λ,求出(A-λE)X=0的基础解系,由基础解系构成P.Ax=0的基础解系为a1=(-2,1)'(A-5E)x=0的基础解系为a2=(1,2)'令P=(a1,a2)=-2112则P可逆,且
|2A|的特征值为8*1.8*3.8*(-2)=8.-16.24A^(-1)的特征值为,1.-0.5.1/3再问:怎么算的呢??再答:公式
列式A等于0,故0是A的特征值.所有特征值的和等于矩阵对角上所有元素的和.故1+0+a=0故最后一个特征值为-1
2为A的一个特征值,根据定义,|2E-A|=03|2E-A|=0|6E-3A|=0根据定义,6是矩阵3A的一个特征值
A2的特征值为1,1,4A2+2E的特征值为3,3,6
参考http://zhidao.baidu.com/question/919393532214610219.html