设不经过坐标原点o的直线l与圆x² y²=1,交
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 07:56:29
若斜率不存在是x=1符合与原点O的距离等于1若斜率存在则y-3=k(x-1)kx-y+3-k=0所以距离=|0-0+3-k|/√(k²+1)=1平方k²-6k+9=k²+
(1)利用点斜式y-2=1*(x-3)=x-3y=x-1x-y-1=0(2)直线L与圆C相切,圆心为原点,由圆心至直线L的距离R=|0-0-1/√(1^2+1^2)=√2/2R^2=1/2圆C方程为x
二者相切抛物线:y^2=4x因此,焦点为F=(1,0)设A=(x0,y0)那么,圆的半径r=√[(x0-1)^2+(y0)^2]=√[(x0-1)^2+4x0]=(x0+1)因此,B=(1-r,0)=
1A(4,0),B(4,2),C(0,2)设OB,AC交点D,D(2,1),直线L只有过D才能分矩形面积成相等的2部分y=kx+b,代入2点坐标得:y=x-12AB垂直直线时,AB最短,k=1,y=k
∵直线y=k(x-2)+3与x轴,y轴交点的坐标分别是,A(2-3k,0),B(0,3-2k).S△=12×|2-3k|×|3-2k|=12×(2k-3)2|k|.当k>0时,S△=12×4k2
假设,p点坐标为(cosa,sina)q点为(cosb,sinb),所以有(cosa-cosb)^2/(sina-sinb)^2=tanatanb左边和差化积得到tan^2[(a+b)/2]=tana
设直线的斜率为k,因为直线与x轴y轴正半轴分别相交,所以k0当y=0时,x=|OA|=(k-2)/k>0|OA|+|OB|=(2-k)+(k-2)/k=2-k+1-2/k=(-k)+(-2/k)+3由
设直线的斜率为k,因为直线与x轴y轴正半轴分别相交,所以k0当y=0时,x=|OA|=(k-2)/k>0|OA|+|OB|=(2-k)+(k-2)/k=2-k+1-2/k=(-k)+(-2/k)+3由
x+y+1=0,3x-y+7=0→x=-2,y=1→A(-2,1).设直线l的方程y=k(x+2)+1与圆x+y=5只有一个交点∴5=x+[k(x+2)+1]→(k+1)x+2k(2k+1)x+4(k
x^2=4y,p=2,则焦点坐标是(0,1)设直线:AB:y=kx+1,A(x1,y1),B(x2,y2),由y=kx+1代入x^2=4y,可得x^2-4kx-4=0.∴x1+x2=4k.x1x2=-
设直线L的方程为:y=k(x-3)设P(x1,y1),Q(x2,y2),则y2*y1/x1x2=-1,将直线代入到圆方程中去,得到:x1*x2=(9k^2+18k+3)/(1+k^2),y1*y2=k
1.O到直线距离d=1/√2=√2/2R²=(√10/2)²-(√2/2)²=2x²+y²=22.x+y-5/x-2=1+(y-3)/(x-2)=1+
设L:x/a+y/b=1,其中a>0,b>0,直线过点M(2,1),则2/a+1/b=1,利用基本不等式,有1=2/a+1/b≥2√(2/ab),从而ab≥8,当且仅当2/a=1/b=1/2即a=4,
正确 椭圆k1k2= -b^2/a^2 双曲线k1k2= b^2/a^2 证明,课本上有……这个是个特例,你可以抽象一下,推广到一般
证明:将y=k(x+1)代入椭圆x^2+3y^2=a^2得x^2+3k^2(x+1)^2=a^2即(1+3k^2)x^2+6k^2x+3k^2-a^2=0因为直线L:y=k(x+1)与椭圆x^2+3y
由题意画出草图(见插图),设,A(a,0)B(0,b),a>0、b>0;又直线过点M,根据草图设直线方程为y=-b/a(x-4)+1将点A(或B)坐标代入得:4/a+1/b=1……①(1)
题目有问题吧!直线方程应该是8x-6y=25吧!你打错了一个符号.按照直线方程8x-6y=25求解.首先将直线化为点斜式y=8/6x-25/6y=4/3x-25/6从这里得知此镜面的斜率k=4/3下面
解法一设P(a,0).Q(0,b).则直线方程:x/a+y/b=1.三角形面积为1/2ab代入点M(2,1)得2/a+1/b=1用基本不等式2/a+1/b≥2根号下2/a*1/b即1≥2根号下2/a*
将A(√3,1)代入x^+y^=r^,r=2,可知|OA|=|OB|=2,设O与AB交C,|OC|=√3,由图|CB|=|CA|=1,得|AB|=|OA|=|OB|=2,所以角AOB=60度,得AB平