设二维随机变量(X,Y)在平面区域G上服从均匀分布

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 18:03:49
设二维随机变量(X,Y)在平面区域G上服从均匀分布
设平面区域D由y = x ,y = 0 和 x = 4 所围成,二维随机变量(x,y)在区域D上服从均匀分布,则(x,y

二维随机是服从均匀分布的,所以根据公式知道:f(x,y)=1/8(D区域面积的倒数)所以X的边缘分布为:∫(0,x)1/8dy=x/80

设平面区域D由y=x,y=0和x=2所围成,二维随机变量(x,y)在区域D上服从均匀分布,则(x,y)关于x的边缘概率密

均匀分布因此设f(x,y)=k.二重积分上下限分别(0,y)dx和(0,2)dy得2k=1,k=0.5因此f(x,y)=0.5,f(x)=积分0.5,上下限分别(0,x)dy=0.5x因此F(X)=0

设二维随机变量(x y)的联合概率为f(x,y)={1,|y|

∫∫f(x,y)dxdy=∫kxdx(0-->1)∫dy(0--->x)=∫kx^2dx(0-->1)=k/3=1--->k=3X的边缘概率密度fX(x)=∫3xdy(0-->x)=3x^2Y的边缘概

设二维随机变量(X,Y)在区域D上服从均匀分布,其中D:0

因为二维随机变量(X,Y)在区域D上服从均匀分布,所以当(x,y)∈D时,概率密度f(x,y)为区域D的面积的倒数,当(x,y)不在D内时,f(x,y)为0因为D:0

设二维随机变量(X,Y)在区域G={(x,y)|0

cxysxsgwhm77766041542011-09-2422:59:06vxjfjghunc\x0df(x,y)=2E(X)=∫[-1,0]dx∫[-1-x,0]2xdy=∫[-1,0]2x(1+

密度函数题设二维随机变量(X,Y)在区域D={(x,y)|0

随机变量(X,Y)在区域D服从均匀分布,则联合密度函数P(X,Y)=1/Ω,Ω=1/2即区域D的面积,为直线x=0,y=x,y=1所围的部分,所以P(X,Y)=2

设二维随机变量(X,Y)服从二维正态分布,求(X,Y)的联合概率密度函数f(x,y)

套公式即可.σ1^2=DX=16,σ2^2=DY=25.ρ=Cov(X,Y)/(σ1σ2)=0.6,√(1-ρ^2)=0.8.f(x,y)=(1/32π)e^{(-25/32)[x^2/16-3xy/

概率统计问题,二维连续型随机变量问题,设二维随机变量(X,Y)的联合概率密度为

再问:为什么是用“1-”,而不能用整个面积去减?还有(4)的x的取值为什么是0到1而不是Y到1?我一直搞不懂这些取值是怎么定的?还有我最后一题看不懂...再答:第一个问题:整个面积的积分的概率就是等于

概率论设二维随机变量(x,y)的联合密度函数

1)c(∫(0~2)ydy)(∫(0~2)xdx)=14c=1c=1/42)一看互相不干涉取值就可以说是独立了fx=(1/4)∫(0~2)xydy=x/2(0

设二维随机变量(X,Y)的概率密度为

注:这是2007年考研数学一第23题,楼主随便在网上搜一下“2007年数学一答案”,就可以找到答案

设二维随机变量(X,Y)的联合分布律为:

我遭得住你是不是把老师不知道题都弄上来了哦嘿嘿当年我们怎么没想到这么个办法呢

一道连续型随机变量问题:设二维随机变量(X,Y)的密度函数

1、由密度函数的性质∫[0--->+∞]∫[0--->+∞]Ae^(-2x-3y)dxdy=1即:A∫[0--->+∞]e^(-2x)dx∫[0--->+∞]e^(-3y)dy=1得:A[-(1/2)

二维随机变量(X,Y)在区域D:0

又见面了哈...现在你应该会做了吧...= =见下图吧

大二概率题设二维连续型随机变量(X,Y)在区域D:0

1)E(X)=E[E(X|Y)],就是先对某Y值上的X积分再对全局积分2)你求出面积,其倒数就是了.3)E(Z)=E(2X+Y)=2E(X)+E(Y)之后如1计算X和Y期望,D(Z)=E(Z^2)-E