设二维随机变量xy在区域D上服从均匀分布

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 20:08:18
设二维随机变量xy在区域D上服从均匀分布
设平面区域D由y = x ,y = 0 和 x = 4 所围成,二维随机变量(x,y)在区域D上服从均匀分布,则(x,y

二维随机是服从均匀分布的,所以根据公式知道:f(x,y)=1/8(D区域面积的倒数)所以X的边缘分布为:∫(0,x)1/8dy=x/80

设平面区域D由y=x,y=0和x=2所围成,二维随机变量(x,y)在区域D上服从均匀分布,则(x,y)关于x的边缘概率密

均匀分布因此设f(x,y)=k.二重积分上下限分别(0,y)dx和(0,2)dy得2k=1,k=0.5因此f(x,y)=0.5,f(x)=积分0.5,上下限分别(0,x)dy=0.5x因此F(X)=0

设二维连续型随机变量(X,Y)在区域D={(x,y)|x>0,y>0,y=1-2x}上服从均匀分布,试求(X,Y)的联合

有点麻烦,牵涉到一些概率论术语.我帮你做出来再详细解释下. 随机变量XY的联合概率密度为:f(x,y)=4,(x,y属于D)或0 (其它),(二维均匀分布的概率密度都是这样算,即1

设二维随机变量(X,Y)在区域D上服从均匀分布,其中D:0

因为二维随机变量(X,Y)在区域D上服从均匀分布,所以当(x,y)∈D时,概率密度f(x,y)为区域D的面积的倒数,当(x,y)不在D内时,f(x,y)为0因为D:0

设二维随机变量(X,Y)在区域G={(x,y)|0

cxysxsgwhm77766041542011-09-2422:59:06vxjfjghunc\x0df(x,y)=2E(X)=∫[-1,0]dx∫[-1-x,0]2xdy=∫[-1,0]2x(1+

概率统计的一道题,设二维随机变量(X,Y)在x轴,y轴及直线x+y+1=0所围成的区域D上服从均匀分布,求相关系数.

f(x,y)=2E(X)=∫[-1,0]dx∫[-1-x,0]2xdy=∫[-1,0]2x(1+x)dx=(x^2+2/3*x^3)|[-1,0]=-1/3同理:E(Y)=-1/3E(XY)=∫[-1

设二维随机变量xy在由x轴,y轴及直线2x+y=2所围成的三角形区域d上服从均匀分布,求

两个截距分别带入x=0得到y轴截距2y=0x1所以定义域三角形面积为1f(x,y)=1在上述给定区域fX(x)=∫(0~2-2x)1dy=2-2x0

密度函数题设二维随机变量(X,Y)在区域D={(x,y)|0

随机变量(X,Y)在区域D服从均匀分布,则联合密度函数P(X,Y)=1/Ω,Ω=1/2即区域D的面积,为直线x=0,y=x,y=1所围的部分,所以P(X,Y)=2

设二维随机变量(ξ,η)在区域D:0<x<1,|y|<x内服从均匀分布,求:

(1)均匀分布面积A=1,f(x,y)=1在D内,当0<x<1时,fξ(x)=∫x−x1dy=2x,故fξ(x)=2x,0<x<10,其他(2).E(ξ)=∫10x•2xdx=23,E(ξ2)=∫10

设二维连续型随机变量(X,Y)服从区域D上的均匀分布,其中D={(X,Y)|0

有两种方法:第一可用卷积公式直接写答案,第二可以用一般的求法,就是把X+Y=Z当成一函数图象.然后利用积分区间讨论Z的范围,进而得到其概率密度函数,概率论与统计书上有的

求联合概率密度设区域D是直线y=x,x=1及x轴所围成,二维随机变量(x,y)在区域D上服从均匀分布,则(x,y)的联合

求出区域面积s=1/2...然后用1去除得:f(x,y)=2(当(x,y)属于D),f(x,y)=0(当(x,y)不属于D).

二维随机变量(X,Y)在区域D:0

又见面了哈...现在你应该会做了吧...= =见下图吧

大二概率题设二维连续型随机变量(X,Y)在区域D:0

1)E(X)=E[E(X|Y)],就是先对某Y值上的X积分再对全局积分2)你求出面积,其倒数就是了.3)E(Z)=E(2X+Y)=2E(X)+E(Y)之后如1计算X和Y期望,D(Z)=E(Z^2)-E