设二维随机变量XY在由y=x y=x2所围成的区域上服从均匀分布,

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 20:22:38
设二维随机变量XY在由y=x y=x2所围成的区域上服从均匀分布,
二维随机变量xy服从(μ,μ,σ,σ,0)分布,求E[x(y^2)]

p=0,所以x,y独立,Exy^2=ExEy^2,Ex=u,Ey^2=u^2+σ^2,所以Exy^2=u^3+uσ^2

设二维随机变量(X,Y)在区域G={(x,y)|0

cxysxsgwhm77766041542011-09-2422:59:06vxjfjghunc\x0df(x,y)=2E(X)=∫[-1,0]dx∫[-1-x,0]2xdy=∫[-1,0]2x(1+

设二维随机变量xy在由x轴,y轴及直线2x+y=2所围成的三角形区域d上服从均匀分布,求

两个截距分别带入x=0得到y轴截距2y=0x1所以定义域三角形面积为1f(x,y)=1在上述给定区域fX(x)=∫(0~2-2x)1dy=2-2x0

密度函数题设二维随机变量(X,Y)在区域D={(x,y)|0

随机变量(X,Y)在区域D服从均匀分布,则联合密度函数P(X,Y)=1/Ω,Ω=1/2即区域D的面积,为直线x=0,y=x,y=1所围的部分,所以P(X,Y)=2

设二维随机变量(X,Y)的概率密度函数为 f(x)={ k(3x²+xy) 0≤x≤1 1

1)根据全定义域上总积分=1   k∫(1~3)∫(0~1)(3x²+xy)dxdy=1   ∫(1~3){(x³+x&

设二维连续型随机变量(X,Y)的联合概率密度为f(x,y)=(1+xy)/4,│x│

(1)f(x)=∫f(x,y)dy=1/2f(y)=∫f(x,y)dx=1/2x,y是均匀分布(2)E(X)=0,E(y)=0D(X)=∫f(x)x²dx=1/3,D(Y)=∫f(y)y&#

概率数学题设二维随机变量(XY)的联合密度函数

∫[0,1]{∫[x^2,x]kdy}dx=k∫[0,1]{(1/2)x^2|[上限x,下限x^2]}dx=∫[0,1](x-x^2)dx=k(1/2–1/3)=k/6=1--》k=6f(x)=∫[x

二维随机变量XY的联合概率密度f(x,y)=(1/2π)(1+sinxsiny)e^((x^2+y^2)/-2) 怎么.

可以先分别求X,Y的边缘函数fx和fy,注意到x,y是对称的,实际上只要求一个就可以了,求出fx,直接把x换成y,就是fy,然后fx*fy不等于f(x,y)即可.回答一下jjl123454321的质疑

设二维随机变量(X,Y)具有概率密度f(x,y)=6xy,(0

Cov(x,y)=EXY-EXEY挨个求出来不就可以了吗?EXY=1/3EY=3/5Ex=2/5Cov(x,y)=7/75

设随机变量(X ,Y)的密度函数为f(x,y)8xy 0

一般概率书上都有公式.对x的边缘概率是对y求变上限积分,本题里,需要分类讨论积分区间.y小于0,大于1,0和x之间.对y的边缘概率类似求得

设二维随机变量xy的概率密度为p﹙x,y)﹛1/A,﹙X,Y﹚∈D,0,其他

利用概率密度积分为1计算经济数学团队为你解答,有不清楚请追问.满意的话,请及时评价.谢谢!

设二维随机变量(X,Y)的联合概率密度为f(X,Y)=8XY,0

若X与Y相互独立,则f(x,y)=fx(x)*fy(y)即联合概率密度等于x和y边缘密度的乘积显然在这里0≤X≤Y≤1,fx(x)=∫(0到1)f(x,y)dy=∫(0到1)8xydy=4x²

设二维随机变量(XY)的概率分布如下图所示

假设横排的是X,竖排的为YX的边际分布P(X=0)=0.15+0.05=0.2P(X=2)=0.25+0.18=0.43P(X=5)=0.35+0.02=0.37Y的边际分布P(Y=1)=0.15+0

设随机变量XY的概率密度为f(x,y)=be^[-(x+y)],0

∫∫be^[-(x+y)]dxdy=1,可得b=e/(e-1)f(x)=∫be^[-(x+y)]dy=be^(-x),0

设(X,Y)为二维随机变量,证明:COV(X,Y)=E(XY)-EXEY

E[(X-E(X))(Y-E(Y))]=E[XY-XE(Y)-E(X)Y+E(X)E(Y)]=E(XY)-E(X)E(Y)-E(X)E(Y)+E(X)E(Y)=E(XY)-E(X)E(Y)

设随机变量X,Y满足E(XY)=E(X)E(Y),则

若独立则不相关,不相关不一定独立.设A,B独立P(A)P(B)=P(AB)cov(x,y)=E(XY)-E(X)E(Y)=E(X)E(Y)-E(X)E(Y)=0,因此A,B不相关.反之,A,B不相关c