设二维随机变量的联合密度函数ke^-3x-4y
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 21:27:29
第一问采用归一化积分,建立一个方程即可,具体的就是密度函数在矩形区域A={0
根据定义做,密度函数在其定义域上两重积分值为1,由题意知:该密度函数在矩形区域 0<x<2, 2<y<4有值,而其他区域为零,且k为常数,则:只在0<
设u,v在[-d,d]上均匀分布且相互独立,则联合分布为f(u,v)=(1/2d)*(1/2d)=1/(4d^2),横坐标为v,纵坐标为u.令x=u-v,当u
套公式即可.σ1^2=DX=16,σ2^2=DY=25.ρ=Cov(X,Y)/(σ1σ2)=0.6,√(1-ρ^2)=0.8.f(x,y)=(1/32π)e^{(-25/32)[x^2/16-3xy/
再问:为什么是用“1-”,而不能用整个面积去减?还有(4)的x的取值为什么是0到1而不是Y到1?我一直搞不懂这些取值是怎么定的?还有我最后一题看不懂...再答:第一个问题:整个面积的积分的概率就是等于
1)c(∫(0~2)ydy)(∫(0~2)xdx)=14c=1c=1/42)一看互相不干涉取值就可以说是独立了fx=(1/4)∫(0~2)xydy=x/2(0
其他情况密度为0,就不用积分了,0怎麼积分都是0F(x,y)=0(x
∫[0,1]{∫[x^2,x]kdy}dx=k∫[0,1]{(1/2)x^2|[上限x,下限x^2]}dx=∫[0,1](x-x^2)dx=k(1/2–1/3)=k/6=1--》k=6f(x)=∫[x
1)在第一象限内作以下三条曲线在第一象限内的部分y=xy=x^2x=1于是f(x,y)=k的区域即为这三条曲线围成的曲边三角形内部,记此区域为D其余部分f(x,y)均为零由归一化条件,(S表示积分号,
计算如图,你的提问应当放在数学分类.经济数学团队帮你解答.请及时评价.
密度积分为1、、、、、利用公式阴影区域积分.
你好 这题的关键点是知道密度函数在全域的积分是1.这样就可以写出等式,解出a的值.根据题目知道x,y都在[0,1]上,所以只要在这个正方形上积分就可以了.具体步骤如下:若f是密度函数,则这个
(1)p(x,y)=(1/3)e^(-3x)(1/4)e^(-4y)-->k=1/12.X和Y独立.(2)P(0
1)P(xy<1)很简单,就是对下图阴影的面积求二重积分∫(1/2~2)∫(1/2~1/y)1/(4x²y³)dxdy= ∫(1/2~2)1/(4(1/2)y
再问:最后一题,X、Y是否相关?请问该怎么做?答案是线性相关。